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A rigorous method is presented for obtaining the Clebsch—Gordan coefficients for the Kronecker
products of induced representations of finite groups. The result obtained is applied to the theory of
space groups, and the final formula for the coefficients has the advantage, as with other subgroup
techniques, of being expressed in terms of the characters of small representations, thereby providing
an additional proof independent of Lax, yet supporting his point of view the subgroup and full-
group procedures are equivalent, and at the same time the result clarifies subgroup treatments so

far given. An example using P23 is given.

1. INTRODUCTION

UNITARY irreducible representation I't of a

space group G is uniquely distinguished by
giving it two labels, a vector k out of a symmetrically
chosen basic domain of the Brillouin zone and an
index p to denote the small representation of the
little group G* to which it is associated. To be
more precise, if D% is a small representation of G*
then T'% is the representation induced from D% in G.
Electron and phonon states in crystals belong to
such representations and are therefore similarly
labeled. .

A transition between initial states belonging to
T and final states belonging to I' caused by a
potential belonging to I't is forbidden by the
symmetry of G if the inner Kronecker product
(T @ T'?) does not contain I'% or, equivalently,
if the triple inner product (I''* @ T @ I'?) does
not contain the totally symmetric representation
of G.

Elliott and Loudon' investigate the analogous
problem in which the states and the potential
belong to three little groups and for which the
answer depends on whether or not the triple product

(19:5R) J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 146

(D** @ Dt ® D™) subduced onto N = G* A
G* A G™ contains the totally symmetric repre-
sentation of N.

In practice it is often the first problem rather
than the second which is of physical significance,
that is, when the selection rule depends on con-
tributions obtained from integrals in which a sum
is taken over all initial and final states belonging
to the appropriate representations of the whole
space group. Of course, Elliott and Loudon appre-
ciated this and took care in applying their rule
to physical problems to allow the vectors m, k,
and h to vary over their respective stars. That it
would be sufficient to apply Elliott and Loudon’s
result repeatedly to solve the first problem was
implied but not proved by the authors. In Sec. 4
we obtain a formula which in fact shows this pro-
cedure to be more than sufficient. The next work
on the subject, by Lax and Hopfield,® was simply
a development in technique for dealing with Elliott
and Loudon’s result. Then Zak® set about to prove
Elliott and Loudon’s formula from first principles,
using the characters of induced representations.
Although it is not clear whether Zak meant this to

M. Lax and J. Hopfield, Phys. Rev. 124, 115 (1961).
8 J. Zak, J. Math, Phys. 3, 1278 (1961).
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be so, his paper gave the impression that, if a single
pair of vectors m’ and k' could be found from the
stars of m and k such that m" 4 k' ~ h (we use
the symbol ~ to denote equivalence), then the
problem of the whole space group is solved by
investigation of the inner Kronecker product of
the small representations of the single triple m/’,
k’, and h. Confusion may have arisen because this
is true for the vast majority of cases, but as we show
in Secs. 4 and 5 this is not true in all cases. Zak’s
proof is adapted to such cases in which only one
triple of vectors needs to be considered.

At about this time Birman,* trying to avoid
subgroup techniques, possibly because he noticed
the deficiency just mentioned, derived the Clebsch-
Gordan coefficients for the single-valued repre-
sentations of the diamond and zince-blende structures,
using a rather laborious method on the whole space
group. The tables given are useful, but the method
is extremely involved and makes no use of the
simplifications that can be obtained by using the
theory of induced representations.

Subsequent papers by Lax*'® are partly concerned
with extra selection rules that can be obtained
when time reversal is taken into account. In these
papers it is realized that, if the vectors m, k, and h
are related, as well as the basis functions of their
little groups, then time reversal can yield additional
selection rules. Also, in the latter paper, Lax®
establishes the equivalence of subgroup and full-
group procedures which, as will be seen in Sec. 4,
we support and clarify. What does not seem,
however, to have been made adequately clear so far
is that particular relationships between m, k, and h
can affect the value of the Clebsch-Gordan coef-
ficients. The formula we derive in Sec. 4 shows
in a completely unambiguous way which relation-
ships, if any, produce such additional information.
In other words, in using our method, no ad hoc
counting technique has to be superimposed on the
method of Elliott and Loudon to get the right
results. An example to illustrate this is given in
Sec. 5.

The purpose of this article, therefore, is to resolve
ambiguities and uncertainties in how to obtain the
correct value of the Clebsch~Gordan coefficients
for inner Kronecker products of space-group repre-
sentations within the framework of the little group
intersection method of Elliott and Loudon. To

4 J. L. Birman, Phys. Rev. 127, 1093 (1962).

§ M. Lax, International Conference on Physical Semi-
conductors, Ezxeter (Institute of Physics and the Physical

Society, London, 1962), p. 395.
¢ M. Lax, Phys. Rev. 138, A793 (1965).
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proceed with this program of work we prove in
Sec. 2 certain theorems on induced representations.
Some of these theorems were proved or stated
first by Mackey,”*® but not in a context which makes
understandable reading for any but the expert
algebraist. From the point of view of the mathe-
matical physicist, an explanation of Mackey’s work
by Coleman® is a better reference but unfortunately
this exists only as an unpublished reprint; the
theorems of Sec. 2 are therefore not yet widely
accessible to mathematical physicists. It is because
of this and also because we have simplified some
of the proofs that these theorems are given in some
detail. We claim no credit except for the work
following Theorem 2.8 and embodied by Eq. (2.14),
which is the necessary new result for the applications
we make later. In Sec. 3 we give a short review of
the theory of space groups. Then in Sec. 4 the
results of Secs. 2 and 3 are combined to produce
the required results, which are simplified and
discussed pictorially. The space group P23 is used
as an example in Sec. 5.

2. INDUCED REPRESENTATIONS

In this section G is any finite group, and if in a
given theorem H, K, or M appear they are sub-
groups of G. C, D, and B are respectively repre-
sentations of H, X, and M and the character of D
in K is denoted by y: All representations are unitary,
but unless otherwise stated they are not necessarily
irreducible. The order of a group G will be denoted
by |G|, its elements by g;, ¢ = 1 to |G|, and its
totally symmetric representation by A(G). An
asterisk always denotes complex conjugation. Other
notations introduced from time to time also retain
their meanings throughout the whole section. We
should like to mention in particular the arrow
notation used by Coleman, the upward arrow for
induction and the downward arrow for subduction.
(The precise meaning of these arrows is defined in
the appropriate place in the text.) We mention this
because we believe that this notation used by
Coleman has done more than anything else to aid
progress in this field.

Certain trivial or well-known theorems will be
stated without proof, for example:

Theorem (2.1): Let T%, ¢ = 1 to r, be the irre-
ducible representations of G and suppose that T' is
a representation equivalent to the direct sum

7 G. W. Mackey, Ann. Math. 55, 101 (1952).

8 G. W. Mackey, Ann. Math. 58, 193 (1953).

9 A. J. Coleman, Report No. 102, Quantum Chemistry
Group, Uppsala University, Uppsala, Sweden.
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>i., C.TY, then C, is the frequency of A(G) in
T* @I (or T ® I'*),

For proof of this theorem see, for example,
Hammermesh.*

We now define what is meant by the represen-
tation D T G, the representation D induces from
K into G. Let us factorize G into left cosets with
respect to K so that

G = > pXK,

where p, are left cosel representatives, which when
chosen we shall suppose fixed once for all. Equation
(2.1) means that each element ¢ €& G is uniquely
expressible in the form p,k,, where p, is one of the
chosen coset representatives and where k, € K is
uniquely determined by ¢. Let ¢,, r = 1 to d, be
a basis for D so that for all k; & K

2.1)

= z‘i‘; é: D(k:)ir. (2.2)

Define for all o and r the d |G|/|K| functions

bor = Do,. (23)

Equation (2.3) is a functional identity, so that,
for equal values of their argument, ¢,, and p.¢, have
the same value. Suppose that gp, € p,K so that,
for some m, p}'gp, = k.. Then

9.y = gp.P,
= pvkmd’r

= ‘ild"ﬂ D(km)tw (2.4)

Equation (2.4) follows immediately from Eqgs. (2.2)
and (2.3), and since g is any element of G, it follows
that the vector space V spanned by the functions
¢.. is invariant under G. If we denote by (¢,| the
row vector comprised of the d elements ¢,1, ¢z, - - -,
.4, then Eq. (2.4) can be written in matrix notation
as

g<¢r‘ = (‘i"vl D ;lgpr)-

Note that v is determined uniquely by g and .
We now define the symbol §,,, to be unity if
gp. € pK, and to be zero otherwise. The d |G|/|K|
dimensional representation of G in the vector
space V defined by the functions ¢, ¢ = 1 to
|G|/|K|, and r = 1 to d, is called the induced rep-
resentation D T G. From Eq. (2.4) we see that
it is comprised of block matrices labeled with Greek
mmmermesh Group Theory and its Application to

gﬁgszcal Problems (Pergamon Press, Inc.,, New York, 1962),
p. 5.
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letters v, 7, ete. such that the (y, ) block matrix
of D 1 G is given by

(D T G)'tr(g) = D(P;lgpr) 8y .0re (2.5)

In the representation D T G there are only |G|/|K|
nonvanishing block matrices, one somewhere in
each row and one somewhere in each column,
just where depending on the array of numbers
4.0~ Within any given block the rows and columns
are as in Eq. (2.4) labeled with Latin letters r, £, ete.
The character x of D 1 G is easily determined in
terms of y. Thus,

x(g) = ZTr (D T Gulg]
= 2 Tr (D@ gpo) be.eel
= 2 V@ gp) du.0v- (2.6)
In Eq. (2.6), 8., implies that the sum over o is

restricted to those ¢ for which gp, € p.K, that is,
those o for which p,Kp;' = K, contains g.

Theorem (2.2): The character x of D T G is
independent of the particular choice of coset repre-
sentatives p,.

This follows immediately from the invariant form
of Eq. (2.6) under change of p,. This theorem
implies that, two representations induced by using
two different choices of coset representatives, though
not identical, are equivalent.

Theorem (2.8): The frequency of A(G)inD T G
is equal to the frequency of A (K) in D.

Proof: We write f(I'*)/T for the frequency of
MinT.

flA@)/(D T G) = IGI Zx(g)

lG] Z E V(D' gD0) 8s.0e
E 2V

¢ o€K,s

,G‘ 2 2 v

2.7

2 gD0) 2.8

= I_fl ké v (k) 2.9

= flA(K))/D.

In the proof, Eq. (2.7) follows from Eq. (2.6),
Eq. (2.8) by reversal of the order of summation,
and Eq. (2.9) because there are |G|/|K| cosets ¢.
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We now define what is meant by a subduced
representation. If T is a representation of G then
T | K denotes the representation I' subduces in K:
it consists of the restriction of I' to elements of K
(and is therefore of the same dimension as T); it
is a well-defined representation since K is a sub-
group of G.

Theorem (2.4): Let T be a representation of G;
then (using ~ to denote equivalence)

ro@1e~Krl (Y®D]TG.

Proof: We establish the equivalence by showing
that the characters of the two representations
coincide. Denote the character of T by 6. Then
the characterof gin T ® (D T G) is

8(g)x(g) = 6(9) ; V(07 gD.) b..0e

Since the character of k in (T' | K) Q D 1s 6(k)¢(k),
it follows from Eq. (2.6) that the character of g in

[(TIK)®DITGis
2 007 gp) ¥ 03 9p) Besve-

But g and p.'gp, are in the same class in G and ¢

is a representation of G so 4(p;'gp.) = 6(g) for
all ¢. The result follows.
Theorem (2.6): Transitivity of Induction. Let K

be a subgroup of L and L a subgroup of G. Then
DTL)YT1G~DTG.

Proof: We establish the equivalence by showing
that if T is an irreducible representation of G then
its frequency in (D T L) T G is equal to its frequency
inD 1T G.

{(T)/D TG
= f[AG)]/T*®D TG by Theorem (2.1)
= flIAG)]/[(T* | K) ®D]TG by Theorem (2.4)
= flAK))/(T* | K) ® D by Theorem (2.3).
But
f/dOTL) 16
= fIJAG))/T*QR[(DTL) 1G] by Theorem (2.1)
=A@V I L) ® D 1116
by Theorem (2.4)
= flAL)]/(T*] L)X (DTL) by Theorem (2.3)

= flAL/{(r*{ L) | K]Q® D} TL
by Theorem (2.4)

= fl[AXK))/(T* | K) ® D by Theorem (2.3),
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and because ('* | L) | K = (I'* | K) (both sides
congisting of identical matrices).

Let us now factorize G into double cosets with
respect to H and K:

G=>HdK (2.10)
in which the d, are called the double coset repre-
sentatives, and in the complex H d.K we count
any element that appears once only. The expansion
(2.10) is unique in much the same way as the
decomposition (2.1) into left cosets: the double
coset representatives are not unique, any element
of a double coset serving equally well as its repre-
sentative; furthermore each element of G appears
in one and only one double coset. Again we suppose
that the d, once chosen remain fixed.

Theorem (2.6): The double coset H d K contains
[H|/|L,| left cosets of K, where L, = H A X,
and K, = d.K d;.

Outline proof: If we express H in terms of left
cosets with respect to L,:

H= ; qavLa:

then what happens is that h d.K &€ ¢., d. K if
and only if b € ¢.,L.. Thus the left cosets of K
in H d,K are in (1 — 1) correspondence with the
left cosets of L, in H, and are therefore [H|/|L,| in
number. Note that because of this theorem it is
possible to choose in Eq. (2.1) p, = ¢., d. and that
as a and vy run over all possible values so does o.

We define the representation D, of K, by the
equation

D.d. kd.) = D),
Theorem (2.7): Mackey's Subgroup Theorem.
(D1G)|H~ 2 (D.|L)TH.

@.11)

forall k& K. (2.12)

It should be emphasized here that the sum over «
is over all « appropriate to the double coset decom-
position (2.10) even though there may exist distinct
a and @8 in the sum for which L, = Ly and D, ~ Ds.

Proof: We show that the characters of the two
representations coincide. The character of A in
(D1G) | H from Eq. (2.6) is

x(h) = ; V(@0 hps) 8, e
Now,

K, = p:Kp:l = Qay d.K dzlq;; = qavKaq:l'l'
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Hence
x(h) = 20 ¥(dz gz rh ey da),
a,Y

where for a given a the sum over vy is restricted
to those v for which ¢ 1hg., € K..
Now from Eq. (2.12)

D(leqZE,hqn da) = Da(q:}vhqav)'
Therefore,

x(h) = }; [}1_: Tr Du(garhgar]-

But ¢., € H 50 ¢.,hq.y € K. A H and therefore
in Eq. (2.13) the restriction on the sum over v for
fixed a is that ¢J;hg., € L,. From Eq. (2.6),
with h replacing g, ¢., replacing p,, and L, replacing
K, we see that the right-hand side of Eq. (2.13) is
just the character of hin D, (D, | L.) T H.

Theorem (2.8):
D1ORCTEO~2{(D.®RC) | L) 1TG.

-3

Proof: From Theorem (2.4) the left-hand side
is equivalent to {{(D T G) | H] ® C} T G, which
from Theorem (2.7) we have just proved is equiv-
alent to

2 {P. | L) TH®C} 1 6.

a

(2.13)

From Theorem (2.4) again this is in turn equivalent
to

THClL)®®. | L)1 H TG

The result follows from the distributivity of sub-
duction, which is obvious, and the transitivity of
induction, Theorem (2.5).

We write E, = (D, ® C) | L, so that E, is a
representation of L, = H A K,.

If we now write G = »_s L,b,M and let N,, =
L. A Mg, where Mg = b;Mbg* and if we define a rep-
resentation By on My by the equation Bg(bymbz') =
B(m), for all m € M, then as a direct application
of Theorem (2.8)

B1OQE 106
~ B ®E) L Nl 16,
from which we conclude that
B1OOD1ORECTE
~Z T B®D.®0)

I M; AK, AH} T G. (2.19
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Equation (2.14) can obviously be generalized by
repeated application of Theorem (2.8) to express
an inner Kronecker product of as many induced
representations as we want. However, we are
interested in the triple product and in particular
the result we require in Sec. 4 is the frequency of
AGDImM (BTG ® DTG X (C1TG). From
Eq. (2.14) and Theorem (2.3), this is the double
sum over « and 8 of the frequency of A(N,.,) in
(B; ® D, ® C) restricted to N, = My A K. A H.
Here « is in correspondence with the double coset
representatives of G with respect to H and K,
and B to those of L, and M.

3. SPACE GROUPS

In this section we review, mainly without proof,
some well-known facts about space groups. If
proofs are required the reader should refer to the
standard works, a good bibliography of which is
contained in the review article by Koster."

In dealing with the case in which G is a space
group we use the notation of Seitz.'? Thus, if

{R|v} €G,

{R|{vlr =Rr +v. 3.1

Here R is a point group operation and v may or
may not be a lattice trapslation t. We denote the
identity by {E | 0}. The elements {E | t}, where t is
any lattice translation, form a subgroup T which
is an invariant Abelian subgroup of G. The irre-
ducible representations of T, D*, are therefore
one-dimensional and may be written in the form

D*({E | t}) = exp (—k-1). 3.2)

In Eq. (3.2) k is a wave vector in reciprocal space.
The basis function for the representation D* is
a Bloch function ¢, (r) for which

{E | t}ou(r) = ¢ulr — t) = exp (—ik-t)¢u(r).

Two vectors k and ¢ are said to be equivalent
(k ~ c¢) if they differ by a reciprocal lattice vector
g such that exp (ig-t) = 1. From Eq. (3.2) D*
and D° are then identical and the representations
of T are therefore in 1-1 correspondence with a
complete set of nonequivalent k vectors. These
can be chosen to form the interior and half the
surface of the first Brillouin zone. If ¢,(r) is a
function satisfying Eq. (3.3) then {R|v}éy(r)
satisfies an analogous equation with exp (—iRk-t)

(3.3)

1 G, F, Koster, Solid State Physics, F. Seitz and Turnbull,
Eds. (Academic Press Inc., New York 1957), Vol. 5, p. 173.
12 ¥, Seitz, Ann. Math. 37, 17 (1936).
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replacing exp (—¢k-t). That is to say {R | v}ox(r)
is a Bloch function with wave vector Rk.

This fact motivates the idea of the group of k.
‘This consists of all the elements of G which trans-
form a Bloch function with wave vector equivalent
to k into a Bloch function also with wave vector
equivalent to k. We denote this group by G*. If
we decompose G into left cosets with respect to G*:

d
G = X (R |vi6Y
then the set of d vectors Rk, ¢ = 1 to d, forms
the star of k. It should be noticed that the group
of Rk is a subgroup of G conjugate to G*, namely
{R; | v;}G*{R,; | v.} "

The irreducible representations of G are classified
within the framework of these concepts. First we
distribute all the mutually nonequivalent k vectors
into stars and choose one k vector from each star.
If h is the macroscopic order of symmetry of G
then h = |G|/|T| and the Brillouin zone has the
symmetry of a point group of order A. What happens
is that the single k vectors from each star just
described can be chosen so that they fill a symmet-
rically chosen 1/h part of the Brillouin zone. This
we call the basic zone. The scheme for finding all
the irreducible representations of G is then as
follows:

(3.4)

(i) Choose a k vector from the basic zone.
(1) If we write
D* 1 6"~ X D}
where the DX are irreducible representations of G*,
then D has the property that

DS({E | t}) = exp (—ik-D)1, 3.6)

where, in Eq. (3.6), 1 is the unit matrix of dimension
Ak, The D% appearing in the sum (3.5) are called
the small representations of G*. The second step
is to determine all such representations D%,

(iii) Select any small representation DX and form
the induced representation I'% = DX 1 G. The
result is that T'% is irreducible and that if we perform
the process described above for all k in the basic
zone, for each k for all p, then we obtain all irre-
ducible representations of G once and once only.
In practice the difficult part of this process is
to determine the small representations. Standard
methods are available for doing this. It can be
shown (see, for example, Lyubarskii'®) that they
are related very simply to the projective repre-

(3.5)

18 G. Ya. Lyubarskii, The Application of Group Theory in
Physics (Pergamon Press, Inc.,, New York, 1960), Sec. 30.
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sentations of the little cogroup, G*/T. It is the
small representations which are tabulated in the
literature so their derivation need not concern us;
for the purpose of this article we may assume that
they are known.

The above theory has been set purposely within
the framework of the theory of induced repre-
sentations so that we may go on to apply the
theory of Sec. 2.

4. INNER KRONECKER PRODUCTS OF SPACE-
GROUP REPRESENTATIONS

The problem that we now consider is that of
the evaluation of the coefficients Cir™® in the
expansion

BQIT = Tomt @D
In Eq. (4.1) the sum on the right-hand side over h
is restricted, by virtue of the scheme outlined in
Sec. 3, to vectors within the basic zone; k and m
also belong to the basic zone. From Theorem (2.1)
CEm:® is the frequency of A(G) in TS Q) I'™ ) T2*,
Now T® = D% 1 G is induced from G and, since
D!#* is a representation of G™ = G*, it follows
that I'"* is also induced from G* and, from Eq. (2.5),
that TP+ = D* 1 G. Also I'} is induced from
G* and I'? from G™. Therefore, in order to apply
Theorem (2.8) we expand G into double cosets
first with respect to G® and G*:

G = 3 G*R. | v.}G". (4.2)

We call the set of distinet k vectors k, = Rk,
as a ranges over its values in Eq. (4.2) the costar
of k with respect to G®. The group

Gt = {Ra ‘ vu}Gk{Ra I va}—l

is the group of k,. Notice that, within the framework
of this definition, the star of k is the costar of k
with respect to T. In general, however, a costar
of k will be a subset of the elements in the star of k.
Following the procedure of Sec. 2, we then form the
group G® A G% = L, and make the decomposition

G = ; La {Rﬁ l Vg}G‘m. (43)
In Eq. (4.3) the 8 indices are in correspondence
with the elements of the costar of m with respect
to L.. As before we write N,y = G5 A GF* A G

In keeping with Eq. (2.12), we write D%, for the
small representation of G for which, if {R | v} & G,

Do({Ba | va} (R | v} R | va}T)
= DS({B | v}).
The representation Dj;, is similarly defined.

449
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Application of the result at the end of Sec. 2
leads now to the expression

Com® = ; ; flTA(N.))/(D3, ® Ds,
@ D2*) | N

Consider now any particular term from the
double sum in Eq. (4.5). Its value is

A/INGD | 5 x5((E |9

X xm({R | v}ne*((R | v})

in which the sum is over all {R | v} € N.; and
x%, is the character of DX, etc.

Performing first a sum over translations we see
that this sum vanishes unless

ka + mﬁ ~ h- (4.6)

On the other hand, if Eq. (4.6) holds then the
sum falls into |T| equal portions and, denoting
the coset representatives of T in N,; by {S | w}
and on using Eq. (4.4), we find its value to be

(IT1/|Na) %,:”x'i({Ra | va} {8 | wHEq | va))

X xz({Bs | va} 7 {S | W} {Ra | ve]e*({S | w}).
4.7)

In order to evaluate CEP'™ we must therefore
determine the costar of k with respect to G® and the
costar of m with respect to G®* A G*, and find all
triples of vectors, one vector from each costar, which
together with h salisfy Eq. (4.6). Since k, m, and h
must belong to the basic zone this is very easy to
do pictorially.

Having found all such triples of k vectors, we
must evaluate for each of them a sum of the form
(4.7). The grand total of such sums is the Clebsch—
Gordan coefficient CX™:®,

We can see now how this fits into the scheme
of Elliott and Loudon, and subsequent authors of
subgroup techniques. First, if one merely requires
the selection rule over the whole group and, by
considering all pairs of vectors one from the star of k
and one from the star of m which have a sum
equivalent to h and evaluate, for each triple of
vectors so formed, a sum of the form (4.7), then
certainly one cannot avoid finding a nonzero con-
tribution if one exists (thereby answering the
question whether or not the transition is forbidden).
On the other hand, if one considers only one such
triple of vectors, one gets the selection rule for that
triple only and not necessarily the selection rule

(4.5)
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over the whole group. Secondly, if one requires
the precise value of the Clebsch—Gordan coefficient,
it is no value either running through all triples of
vectors from the various stars or restricting one’s
consideration to a single trio. Put in this light it
becomes abundantly clear that one needs a rule
for determining which triples of vectors have to be
considered and this rule is the one italicized in
this section and given in terms of the costars of
k and m.

5. EXAMPLE

To illustrate the results of Sec. 4, we give here an
example using the space group P23. This example
is chosen to produce cases in which more than one
term survives in the sum (4.5). P23 is based on the
simple cubic lattice, and, to prevent us having to
introduce details of the lattice and the Brillouin
zone and definitions of the operators, we use for them
exactly the notation of Altmann and Cracknell.* The
point group of P23 is the tetrahedral group which
contains the 12 elements E, C,,, C5(m = z, y, 2;
i =12 3, 4). We consider only two points in the
basic zone: T = (0, 0, 0) and M = (1/2, 1/2, 0).
Coordinates are given here in units of reciprocal
lattice vectors in the =z, y, and z directions. We
define the points M* = C; M = (0, 1/2, 1/2)
and M~ = C;;M = (1/2, 0, 1/2). The star of T is
just the point T by itself, and the star of M consists
of the three points M, M*, and M ™.

In Table I we list the characters of the small
representations of G* and G". The group of T is
the whole space group, but the group of M contains

TaBLE 1. The small representations of T' and M. Note. The
symmetry operations should be identified from Fig. 4 of
Altmann and Cracknell. The suffices m, j take the following
vahues with reference to this figure:m =z, y,andz;j = 1,2, 3,
and 4.

T E 3C2m 4C,;t 4C;;~
A 1 1 1 1
1B 1 1 w? w
B 1 1 w wt
T 3 -1 0 0
M E sz Czy C!l
A, 1 1 1 1
B, 1 -1 -1 1
2 1 —1 1 -1
3 1 1 -1 -1

sw = exp (2xi/3). All translations are represented by the identity in r.
Butin M,{E |t} and (E| t:} are represented by —~1 and (E | ts} by 1.

4§, L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37,

19 (1965).
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multiples of the translations with just four rotation
operators: E, C,,, C,,, and C,,.

For our example we consider the inner Kronecker
product of pairs of representations of M. We
write M A, for A, T G, ete. In the notation of Sec. 4
k=M= (1/2,1/2,0)andm = M = (1/2,1/2,0).
It is soom verified that, with this choice of k and m,
the only possible values of h that can appear in the
right-hand side of Eq. (4.1) are h = T = (0, 0, 0)
andh = M = (1/2, 1/2, 0).

Take first the case h = T. From Eq. (4.2) the
costar of k = M with respect to G is just the
point M = (1/2, 1/2, 0), and the one value of &
18 in correspondence with the identity {E£ | 0}.
The group intersection L, = G* A G¥ = G,
From Eq. (4.3) the costar of m = M with respect to
G consists of M, M*, and M~ and the values of g8
are in correspondence with {E | 0}, {C;, | 0}, and
{Co |0}.Since M + M ~T, M + M" ~ M,
M 4+ M~ ~ M", the only pair of «, 8 values that
are compatible with Eq. (4.6) are when we choose
k, = M and my = M. The triple intersection
group N,z = G¥.

Take now the case h = M. The costar of k = M
with respect to G* consists of M, M*, and M~ and
the corresponding « are {E | 0}, {Cs% | 0}, and
{Cq; | 0}. Since G* is invariant under these oper-
ations, the groups of M, M*, and M~ coincide so
that in each case L, = G". Again the costar of
m = M with respect to L, consists (for each «)
of M, M*, and M~, and the values of 8 are in corre-
spondence with {E | 0}, {C;, | 0}, and {C,; | O}.
Of the nine possible pairs of e, 8 values we now
have two pairs which are compatible with Eq. (4.6):
when k, = M and my = M, and when k, = M~
and m; = M. In both cases N w = GY,

Consider now in detail the product MB, K MB,.
There are three cases to consider:

(l) ka =M,ma=M,h= T.
From Table I the sum (4.7) becomes
XHE) — x7(Ca) — x5(Ca) + x5(Ca)],

which is zero when r = A, 'E or °E and unity when
r =T,

(i) ke = M*
Now
C3_1C2=CS‘: = C2l) CS-;C2|103-: = 02::, 03‘;02103: = 02:”

and, on using these relations and Table I, the sum
(4.7) is now

,mﬁ=M—,h=

C. J. BRADLEY

Tasiz II. The inner Kroneckexl"froducts of representations
belonging to M for P23.

A1®A1=A+1E+2E+2A1
A1@B1 =T+ B, 4 Bs
Ay@®B:; =T +B;+ B
A1®Ba =T+Bl+Bz
B1®Bl=A+1E+2E+2Bl
B, ®B: =T + B; 4+ Ay
Bi®Bs =T + B: + 4,
B:®B: = A +1E +E + 2B,
By@By =T+ A1+ B
Ba@B; =A+1E+2E+2Bg

(i) Each line of the table is an abbreviated form of an equation
like (5.1). Since no confusion can arise, the prefix I'or M
has constantly been omitted.

(ii) To obtain a Clebsch-Gordan coefficient C’:‘ m' b pickup the

number multiplying the symbol corresponding to 7 on the
right-hand side of the equation whose left-hand side con-

tains the symbols p and g. For example C’z‘ 1: ‘;‘4 = 2,
1

Notes.

1B + %" (Cor) + x (Ca) + x(C)],

which is zero when r = B,, B;, or B; and unity
when r = A4,.

(i) k, =M ,mg = M, h = M.
This time the sum (4.7) is
@) — x'(Cae) — x5 (Caa) + x0' (€],

which is zero when r = A,, B,, and B;, and unity
when r = B,.

Collecting these results together, the equation
corresponding to (4.1) is

M32 ® MB;; = PT + MAl + MB]- (5.1)

As a check on Eq. (5.1), note that the dimension
of each side is 9 (representations of M in P23
being of dimension 3).

In Table II we list all 10 such products for
representations of M.

To conclude we make just two remarks. First,
although we chose k = m in the above example,
this is neither necessary nor sufficient for more than
one pair of @, 8 values to survive. Secondly, provided
the sum (4.7) is evaluated as indicated in the ex-
ample, it is not necessary to have at one’s disposal
a character table of N ;.
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The random phase approximation equations of motion for the electron—phonon gystem are solved to
obtain long-time expressions for the basic operators that appear in the calculation of correlation
functions. These operator expressions are used to obtain a kinetic equation for the electrons and an
expression for the phonon spectral function. The kinetic equation has the same form as the Balescu—
Lenard equation, Expressions for the density autocorrelation function and the two-particle cor-
relation function are also obtained. The latter is shown to have the same form as the test-particle

result for a classical plasma.

INTRODUCTION

HE approach to equilibrium in the electron—

phonon system has been studied by several
authors. Pines and Schrieffer' used the Bohm-Pines
collective-coordinate approach and first-order per-
turbation theory to obtain coupled kinetic equations
for electrons, phonons, and plasmons. Wyld and Pines®
have shown that the Balescu-Lenard quantum col-
lision integral yields the eoupled kinetic equations for
the electrons and plasmons. Ron® used a hierarchy
approach and the Bogoliubov (adiabatic) assump-
tion to obtain coupled kinetic equations that in-
cluded the Balescu—Lenard collision integral. Michel
and Van Leeuwen* have used a Green’s function
approach to obtain kinetic equations for the elec-
tron—phonon system excluding the coulomb inter-
action.

In this paper we use an approach originally devel-
oped by Wyld and Fried for the electron gas.® This
method consists of solving the random phase approx-
imation (RPA) equations for the long-time behavior
of certain operators. These long-time operators are
then used to calculate asymptotic expressions for
correlation functions. The resulting kinetic equation
has the form of the Balescu~Lenard equation for the
quantum electron gas. The wavenumber- and fre-
quency-dependent dielectric function that appears
in this equation is the dielectric function for the
electron—phonon gas. The spectral function for the
phonon Green’s function is also calculated. When
the explicit contributions of the optical and acous-
tical resonances are considered, the results of Pines
and Schrieffer' are obtained. In equilibrium, the

1D, Pines and J. R. Schrieffer, Phys. Rev. 125, 804 (1962).

s H. W. Wyld, Jr. and D. Pines, Phys. Rev. 127, 1851
(19‘6?&) Ron, J. Math, Phys. 4, 1182 (1963).

« K. H. Michel and J. M. J. Van Leeuwen, Physica 30, 410
(1964), and K. H. Michel, bid. 30, 2194 (1964).

H. W. Wyld, Jr. and B. D. Fned Ann. Phys. (N. Y.) 23,
374 (1963).

acoustic phonon distribution is given by the Bose—
Einstein distribution with the renormalized phonon
frequencies. An expression for the density auto-
correlation function is derived that agrees with the
result of Lee and Tzoar.® Finally, the two-particle
correlation function is expressed in a form similar
to the test-particle result of Rostoker.”

EQUATIONS OF MOTION

The electron~phonon Hamiltonian is assumed to
be®

H = 2 ECCo + 3 X (rupx + Olgiar)
+ ; %p-xqc + % Xk: o@prp-x, (1)

where C,, and C,, are the annihilation and creation
operators, respectively, for Bloch electrons with
momentum p and spin s, and obey the usual anti-
commutation relations

[Cpn Cp':']+ = [C,:,, C;’-']-r = 0,
[Cnu C;’a’]+ = Op.p’ Osere
The quantity p, is given by

= pz C;-}k.nCD+)k..- (3)

@

and

The operators g, and p, are the phonon canonical
operators and obey the relations

p; = D-x,
[pky Dx- ]- = (4)

t
I = (-x,
(g%, gx')-
and
[9x, Px]- = % 8y kv,

The quantity ¢(k) = 4we’/k’ is the coulomb inter-

action; @, the bare phonon frequency; and »,, the

¢Y. C. Lee and N. Tzoar, Phys Rev 140, A396 (1965).
64).

7 N Rostoker, Phys. Fluids 7, 491 (
8 J. Bardeen and D. Pines, Phys Rev 99, 1140 (1955).
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coupling of bare phonons to the electrons. These
latter quantities are given by®
0% = @Z'¢N/M
and
—ik(N/ M) 4nZe' /K7, 5

where Ze, M, and N are the charge, mass, and the
total numbers of ionic cores. We have taken % = 1
and chosen for convenience to work in a unit volume.

To obtain a kinetic equation for the electrons, we
must find an asymptotic equation of motion for the
electron distribution function F,(p) = (C}.C,.),
where (4) = T,pA and p is the density matrix. The
exact equation of motion for this quantity is given by

aFa(p)/at = [aFc(p)/at]ph + [aFa(p)/at]el; (6)

where

[OF.@)/00 = ~2 T T [ (0,65, B + $0)a0)] ()

@-)* =v, =

and
[9F.(0)/0t] = 2 Zk: ¢(k) Im (b.(k, p + 3k)p-i). (8)
The operator b,(k, p) is defined by

b.(k, p) = C;-ik.ncvﬂk.t- (10)

Thus, we need to obtain asymptotic expressions
for the correlation functions (bs(k, p)p_:) and
(b.(k, P)gx)-

Wyld and Fried used the RPA equation of motion
for b,(k, p) and the Bogoliubov (adiabatic) assump-
tion to obtain asymptotic expressions for the oper-
ators b,(k, p) and p, for the electron gas.” They
then used these expressions to obtain an asymptotic
expression for the correlation function. We use the
same method to obtain asymptotic expressions for
the correlation functions that enter this problem.

The RPA or linearized equations of motion are
given by®'*°

(11)
12)

9qi/dt = p_x,
/9t = — Qg-x — Vip—i,
and
ab,(k, p)/at = —iQ(k, p)b,(k, p) + A, (K, P)gx

-+ ’I,d)(k)A,(k, p) p'z‘; ba'(k7 P'): (13)

where

Q(k; P) = Ep-l»ik - Ep—}k

9 D. Pines, Elemeniary Ezxcilations in Solids (W. A.
Benjamin Company, Inc., New York, 1963), p. 246.
1 R, K. Nesbet, J. Math. Phys. 6, 621 (1965).
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and

Ak, p) = F,(p + 3k) — F.(p — 3k). (14)

We will use the Bogoliubov assumption that the
quantity F,(p) can be considered independent of
time in the calculation of the correlation functions.
We then introduce the one-sided Fourier transforma-
tion:

0w = [ " g0 dt,
° (15)
0@) = 217 f 'O do,

where Im w > 0. With the use of the above trans-
formation Egs. (11)-(13) become

—td@) = ¢c0) + px(), (16)
—twpi(w) = pe(0) — Rd x() — viprlw), (17)

and

_7'[“’ - Q(k) P)]6,(k, P, w) = ba(ky P, 0)
+ iva-(k: P)Qk(w)

+ ip(k)A.(k, p) ’E bk, p',w). (18)

These equations are easily solved for the operators
Gi (@), Py (), and py (w). The results are given by

() = ilo’e(k, w)]™
X (K&, o)lwge©) + ip-x(0)] + v-.F(k, o)},
Pulw) = [We(—k, )]

X {K(~k, )[iwpx(0) + %g-x(0)] + vwf(=k, o)},
(20)

19)

and

x(w) = tfo'elk, )]
X (@ — 2P, w) — 0QK, »)lwg(0) + ip-«0)]},

1)
where
_ + b&p,0
oo = 2 etn: @
- S _Ak D
Q(k: "") = D.Ecw — Q(k, p) ’ (23)
Kk, w).= 1 + $(k)Q(k, ), (24)
and
ek, w) = K&, w) ~— Q/o". (25)
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The quantities K(k, w) and e(k, w) are the RPA
wavenumber- and frequency-dependent dielectric
constants for the electron gas and electron-phonon
gas (neglecting periodic effects), respectively.

ASYMPTOTIC BEHAVIOR

To obtain the asymptotic expressions ag { — o
for the operators gk(t); pk@)) Px (t); and ba(k) P t):
we must obtain the inverse transformation. For a
stable system, the only poles arise from the quantities
[w’e(k, ©)]™* and F(k, ). The zeros of e(k, w) corre-
spond to the acoustic and optical phonon excitations,
and the location of these poles is given by the solu-
tion of the dispersion relation

o' = 9i/K(k, v). (26)

Since these poles are in the lower half of the w-plane,
we assume that the corresponding contributions
represent transients that can be ignored. Thus the
only pole we need to consider is that arising from
F(k, w). We thus obtain

b.(k, p, 0)e 1

%l ~ 0 20 P Do, O, D)’ @)
-« 20, Pbi(—k, p, 0=
) ~ine 2 g e o T @0
and
[0, p) — b0k, p, 0)e~ "=

)~ 2 T g pek, o, ] @)
where

e, ) = ek, @ + in). (30)

The quantity % is the positive infinitesimal. It is
present because of the analytic continuation of
e(k, w), which is necessary for the integration. Hence-
forth, we drop the subscript +.

We obtain the asymptotic formula for b,(k, p, )
by substituting the expressions given by Eqgs. (27)
and (29) into (13) and by solving the resulting
equation subject to the condition

pk(t) = pz; b.(k, P, t)' (31)
The result is
b.(k, p, ) = bk, p, 0 " — ¢(R)A,(k, p)
b.'(ky p,) 0)6..‘0“:"‘)‘ .
X X & ok ook p) — 0% 9 T ©2

We now have what constitutes a full deserip-
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tion of the asymptotic behavior of the system
(within the RPA). In the process of calculating
correlation functions, we will encounter the quantity
{b.(k, p, 0)b,-(—Kk, p’, 0)). This quantity can be
written as

8:.:'6p,p'Fa(p - %k)[l - F,(p + k/2)]
+ gn’(k; P, p') 0):

where ¢,,- (&, p, p’, 0) is the usual two-particle correla-
tion function at ¢ = 0. We have used the Bogoliubov
assumption to replace F,(p, 0) by F.(p, t). The
initial two-particle correlation function will always.
be multiplied by a factor of the form exp [if(k, p)t}.
The Riemann-Lebesgue theorem can then be used
to show that such contributions will vanish as { — o
(phase mixing).

Using Egs. (7), (8), (27), (29), and (32) we obtain

oF.(p) _ lo(®)[*
ot =, 2 T ok, p T IR

X [k, p + KRGk, p' — k/2)
X ook, p + k) — ok, p’ — iK)],

(33)
where
Gik,p) = F.(p & k)1 — F.(p F 3K)]. (39

The above kinetic equation has the form of the
Balescu-Lenard equation. The ordinary Balescu-
Lenard equation is obtained if we let the ion mass
become infinite. It is readily demonstrated that
Eq. (33) satisfies the usual conservation laws (total
momentum and spin) and that there is an H theorem.
The general time-independent solution is the Fermi—
Dirac distribution.

The form of Eq. (33) is somewhat surprising at
first glance. We would expeet to obtain terms that
correspond to the emission and absorption of acous-
tical phonons by the electrons, as well as terms that
describe the coulomb interactions between the elec-
trons.' In the next section we show that such
emission-absorption terms are obtained from Eq.
(33) when appropriate approximations are made.

GREEN’S FUNCTION AND ACOUSTIC PHONONS

We can also obtain asymptotic expressions for
quantities such as

D(k, t — ¢) = {gu()g-x(t)) (35)

and

Dk, t — t') = (g-«(t)qx(D)). (36)
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These quantities are closely related to the phonon
Green’s function." With the use of Eq. (27) D> and
D* are found to be given by

D, =) = ' 3 [ dae " o — 2k, p)]

« Fep — 3011 — F.(p + )]
" lek, ) [°

G

and
D, t— 1) =l 3 [ dae™*¢"" a0 — 0k, B)

x Fdp + 301 — F.(p — }i9)]
w* |e(l, o) [* ’
where we have neglected the initial two-particle
correlations. The spectral function

(38)

Bk, w) = D’(k, w) — D*(k, ), (39)
where
D) = [ a0, @0
is given by
B(k, w)
= ol 3t s - 0t ). @)

The contributions of the acoustic phonons can be
isolated if we take only the contributions from acous-
tic resonances in 1/|e(k, )|”. Near these resonances
we can write

ek, ) = 2Kk, 0)/wx)(w — wx + t7x), @R wx,
ek, ) = —[2K(k, 0)/w_]
X+ ox+y-x), R —wx (42
where
wi = Q/K(k, 0) 43)
and
v = ~SER S A, D) Oex — 0, B). 49

If we use an analysis similar to that of Wyld and

Pines,” the acoustic contribution to 1/]e(k, w)|* is
found to be
1 - Ty 5w — wy)
le@e, 0)|* 47Kk, 0)* y
2
TW
+ e e o). 49)

11 G, Baym, Ann. Phys. (N. Y.) 14, 1 (1961).
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We then find that

Bk, w) = ~x[wp' 8w — wx) — ook 8w+ w-i)],

which agrees with the results of Baym."!
Equation (45) can also be used to obtain the
acoustic contribution to D<(k, ). The result is

< 2ok
D) - H

X 2 Gk, B) oo — 20k, )
2 ¢(k)
47-kK(k’ 0)
X pz.: Gt(k) P) 5(w—k + Q(k; p))'

(46)

8w — wy)

+ 0w + w_y)

47

For a system of noninteracting quasi-phonons with
frequencies w,, the result is

Dk, w) = 2#[2—N;E 8w — wy)

+ @—j;}U 3o + w-.o]- (48)

In this approximation we can take the identification

Nu(t) = ""’(k"““) 3 0,) sox — 202 (49)

2y Kk, O

The above equation agrees with the results of Pines
and Schrieffer.! if the Fermi distribution for F,(p) is
used in the above equation, we obtain the Bose—
Einstein distribution:

Nu = (@ - (50)

The acoustic contribution to the kinetic equation
[Eq. (33)] is obtained by using the approximation for
1/e(k, ) given by Eq. (45). If Eq. (49) and a similar
equation for 1 + N, are then used, we obtain

["’F o ] - TR (s - ok, p + 1)
X [Gik, p + 3K)1 + N.) — Gk, p + 3R)N.]
— box — 9, p — HOIGE, p — 38)
X (1+ Ny) — G3E, p — BN,

which agrees with the results of Pine and Schrieffer
for the contribution of the acoustic phonons to the
kinetic equation.! The contribution of the optical
phonons (plasmons) to Eq. (33) can be obtained by
approximating 1/e¢(k, «) by its behavior in the
neighborhood of the plasmon poles.”

Thus, in the approximation where 1/e(k, w) is
approximated by its behavior near its poles (acoustic

n.

QY
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and plasmon), and when v,/w, < 1, the kinetic
equation given by Eq. (33) can be written approxi-
mately as the sum of two parts. One part is given
by Eq. (51) and gives the contribution of the acous-
tical phonons as g difference of gain and loss terms
arising from the Cherenkov-like emission and absorp-
tion of acoustical phonons. The other term is a
plasmon contribution having the same general form.

DENSITY AUTOCORRELATION FUNCTION AND
TEST-PARTICLE RESULT
The expressions obtained for the operators
b.(k, p, t) and p(k, £) can also be used to obtain the
density autocorrelation function and the two-
particle correlation function. The density autocor-
relation function is given by

{o(~k, D)ok, ')

- v [0k p) — 8GNk pe” P
p.e 94(]‘: )] le(k} Qk, P)) |2 ’

and the spectral function by

(52)

_ 2r(w® — OO)°
) =l

g Gt(k: P) 6(‘9 - Q(k: P))’
| (53)
where

(P(x: t)P(x’: t’»
- zk: f g_w; S(k, w)e-ik-(x—x')eic»(:—t')‘ (54)

The above results agree with those obtained by Lee
and Tzoar® [with a suitable redefinition of e(k, w)].
It is possible to write the result for the two-
particle correlation function in a manner that re-
sembles the test-particle result obtained by Rostoker
for a classical plasma.” If we define the quantity

P,k p|p)

= — ¢(k)Ac'(k1 P’)
[k, o(k, pI*[ok, p) — e, p) — ]

and assume that g,.-(k, p, p’, 0) = 0, we obtain

9. (&, p, 0, ) = Pik, p’ | p)GL Gk, D)

+ Pk, p | p)G &, )

+ X P p” | PPl 0 20600 ), (50)

(55)

where the identity*
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<bt(k: P, t)bn’(—'k; P': t))
= B8y 8.,0Gk, D) + o F.(DF. ()
+ gu’(ky P; p’) t) (57)

has been used. Equation (56) closely resembles the
test-particle result for the two-particle correlation
function.”

SUMMARY

We have derived asymptotic expressions for cer-
tain electron and phonon operators by using a
method developed by Wyld and Fried for the elec-
tron gas. We obtained these expressions by solving
the set of RPA equations of motion as an initial
value problem and then considering the poles in the
complex @ plane. The use of these operator expres-
sions and the Bogoliubov (adiabatic) assumption
for the particles enabled us to obtain a kinetic equa-
tion and the expression for various correlation fune-
tions. The kinetic equation that was obtained has
the form of the Balescu—Lenard equation for an
electron gas. The difference is that the dielectric
constant for the electron gas is replaced by the
dielectric constant for the electron—phonon gas.
Certain phonon-phonon correlation functions were
also obtained, as well as the density autocorrelation
function and the two-particle correlation function.
The latter result was shown to have the appearance
of the test-particle result of Rostoker for the classical
electron gas.”

The general picture obtained here of the approach
to equilibrium is that the phonons are dressed by
the particles in such a manner that the initial bare
phonons decay in a time given by the damping time
for a quasiphonon. The equal-time phonon-correla-~
tion functions at long times become functions of
time only through the funetional dependence on the
one-electron distribution function. Meanwhile, the
contribution of the initial two-particle correlation
function decays through phase mixing. A similar
picture has been obtained by the test-particle
method for a classical plasma interacting with an
electromagnetic field."
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The different methods of majorization of Feynman graphs are reviewed and their respective domains
of application and relative merits are discussed. The initial steps of Wu’s majorization method are
discussed in a variational formalism. Effort is made to present the rather complex arguments involved
in Nakanishi’s “path method’’ in a systematic manner.

I INTRODUCTION

N order to investigate analytic properties of

Feynman amplitudes it is convenient to study
the so-called V-function® appearing in a parametrized
Feynman amplitude. Since a general physical process
involves usually an infinite set of Feynman graphs,
it is therefore more interesting to know a lower
bound of the domain in which all the graphs of
the set are analytic. “Majorization” is just the
criterion sorted out toward this end. To state exactly,
magorization means that, for two Feynman graphs
G and 7 with the same set of external momenta
{p:}, but arbitrarily different otherwise, the graph
G majorizes the graph G’ if

\v4 {p,} : Min VG S Min Vq', (1)

where V; denotes the V-function of the graph G.

Before defining the V-function, we introduce some
notations and definitions. Let the total numbers of
internal lines (external lines and vertices) of, a Feyn-
man graph G be denoted respectively by J, °J,
and N. An <nternal line is usually denoted by a
subscript i to the left of the symbol, like ;j, and
an external line is denoted by a superscript e to
the left of the symbol, like °j. Similar convention
is used for vertices; an external verfex is a vertex
attached to some external lines besides internal
lines. An internal vertex attaches only to internal
lines. When we say ‘‘shrinking a line ;5 it means
i is first deleted from the given graph @, then the
two terminal vertices of ;j are identified. This, of
course, yields a new graph called a “reduced graph
of G”’. The operation “‘shrinking” is denoted by the
symbol |. Thus G (J:%:j) means to shrink internal
lines ;¢ and ;j from the graph G. The operation
“deleting”’ is denoted by the symbol T. The graphs
resulted by deleting some of the internal lines of
a graph G are called the subgraphs of G.

* This research was supported in part by the Graduate
School of University of Wisconsin at Milwaukee, Wisconsin.

1 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) Suppl. 18,
(1961).

The following definitions are also useful here:

(a) The star, 8,, of a vertex v, is defined as the
set containing all internal and external lines attached
to the vertex v, and the vertex itself, A star is called
an external star, ¥, if the vertex concerned is an
external vertex. An internal star, $°, contains an
internal vertex. The subset of the totality of external
lines of an external star $* is denoted °S. The subset
of the totality of infernal lines of an external star
$* is denoted by ;$*

(b) A path @ is a connected graph which contains
only some vertices and internal lines such that each
of the two terminating vertices attaches to one line
only, while each of the rest of the vertices attaches
to exactly two lines. ®(v,v;) denotes a path with
terminating vertices v; and v;.

(c) A graph @ is connected if

Vo, v; € G=JCkwr,) CG,

where C means “is contained in”’. Also, we shall
use the symbols \U and M for unions and inter-
sections.

(d) A loop, @, is a connected graph such that
each vertex attaches to exactly two internal lines.
A direction is usually assigned to a loop.

(e) An intermediate-state set, d, of a given Feyn-
man graph G is a set of internal lines such that @
is separated into two disjoint connected subgraphs
if 4 is deleted from G, yet G will remain connected
if only a proper subset of g is deleted.

The 4-momentum assigned to an internal line j
will be referred to as an internal momentum, g;.
The internal momenta may be decomposed into
two parts:

g = K; + P; 2
with
L
K,- = ; silkl (3)
and

1158
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P; = Z NiP+» (€))

i=1

where {p,, -+, p™} is the set of external momenta
and ‘N the total number of external vertices in G.
K, and P; will be referred to, respectively, as the
integration momentum and constant momentum of the
internal line j. {K,, --- , K.} is the set of basic
momenta each of which flows along a loop, and such
that any internal momentum can be expressed as
a linear combination of the basic momenta.
{K,, --+ K.} is usually called a base and the loops
associated with it are called basic loops, to be de-
noted by {e}, --- , @€2}. The base is clearly not
unique for a given G.

We also define here that a set of momenta
{p, -+ , px} 18 Euclidean if, for any set of real
coefficients {a,, :-- , ay}, the following condition
is satisfied:

¥ 2
(; aip,-) <o, 5
or symbolically,
p; € E.
Next, the coefficients appearing in (3) are defined by:
g: =0, if j & ¢
§;; = =, if j € € and £j || €.

The coefficients 5,;; in (4) may take any constant
values provided conservation of internal momenta
at each vertex is satisfied.

The V-function of a graph G is then defined as

J L

V= Laml+P)~ 7 3 Awbbe, ©

i=1 1,1'=1

where {a;, -+ , a;} = the set of Feynman pa-
rameters;
U = det g,

Ay, = l'th cofactor of &,
@ = the L X L matrix of elements a;-,
)

Using the U and V functions, the parametrized
Feynman amplitude of a graph G can be expressed
in the form

Fy = (i)5(J — 2L — 1)![01 f

J
Ay = Z ;8:18;10.
i=1

J
1] d
J
5(1 -2 j)
X U2(V' — 7:€)J—2L

©)
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for J > 2L, € is an infintesimal, positive number.
The U-function can never be negative; the zeros
correspond to the ultraviolet divergence which is not
of present concern since we are interested in analytie
properties only. The V-function is the object of
present investigation.

If a graph G majorizes another graph @/, and
if one can show that

Min VG’ >0

is established for certain value (or certain region
of values) of {p,}, then V¢ > 0 is true for the same
value (or region of values) of {p;}. In this way,
we can get a lower bound of the domain of analyticity
by means of the few Feynman graphs which majorize
many (or infinitely many) other much more com-
plicated Feynman graphs. The presently available
methods of majorization are: Wu’s majorization
method derived from electrie circuit analogy® and
its extension by Boyling,® Nakanishi’s majorization
by the so-called “Path method’’*** and Symanzik®
and Logunov ef al. majorization by purely algebraic
manipulation.®

IIL. WU’S METHOD OF MA JORIZATION

The essential advantage of Wu’s majorization
method lies in the fact that it imposes no require-
ment of the set of external momenta’s being Eucli-
dean. Originally, the derivation of Wu’s majoriza-
tion was based upon electric circuit analogy. We
carry out here some initial steps of the formalism
in variational relation without going through the
development parallel to the details given in Wu’s
original paper.

We first introduce double subscripts for the ex-
ternal momenta, e.g., p.; denotes the ith external
momentum (labeled independently of the vertex
upon which it is incident) incident upon the nth
vertex, we have, therefore,

V evn : pn = pm' y (9)

AT

where p, is the effective external momentum at the
vertex °v,. The conservation rules can be written as

vsE: VZ;G Pui = 0 (10)

2 T. T. Wu, Phys. Rev. 123, 678 (1961).

3 J. B. Boyling, Cambridge preprint.
(1946 %‘I) Nakanishi, Institute for Advanced Study Preprints
(1955 g() Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690

¢ A. A. Logunov, L. T. Todorov, and N. A. Chernikov, Zh.
Eksperim. i Teor. Fiz. 42, 1285 (1962). [English transl.:
Soviet Phys.—JETP 15 891 (1962)]. I. T. Todorov, Doctoral
dissertation, Joint Inst. of Nuclear Research, Report P-1205,
Dubna (1963), and literature cited there.
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and

> 0 =7Pa

Vii€8a

Vs, : an

with the understanding that p, = 0 if 8, is an
internal star.

Next, let us use the notation g..,, to denote the
internal momentum which initiates from the vertex
n and terminates at the vertex n’ with u; denoting
the multiplicity (that is when there are several lines
incident upon the same pair of vertices n and n’).
Thus (11) can be written as:

vn Z Qrnrw; = Dn (12)
n’ L uy
and also, obviously,
q:;n’m = —Qn'nm- (13)

In order to take into account of (12) by the method
of Lagrangian multipliers, we define

Ri= 3 Quw = Pn (14)
n' L ug
Therefore,
aR"/a qmm’n' = 6”.. - 8,.,,.1, (15)

where ;7 € 8,, M 8, is assumed.
Next, let us introduce a set of Lagrangian mul-
tipliers {\}. Thus, the requirement of

d
7 (Xegi+ XMR) =0 (16)
qum';u i »
is equivalent to the condition
Vij:0V/dg; =0 @17
with (12) satisfied.
Using (15), condition (16) becomes
vn,n’ !2d,~q,m',., + M- = O: (18)

which is the important variational relation we are
looking for.
Next, (12) can be written into

V’ﬂ : Z qﬂn'ﬂf

n’ i

where the ¢, determined by (18) and (19) together,
gives:

~ Ps = O’ (19)

V = ¥({gDl-1a- (20)

We note that §; is a function of «; thus V is also.
From (18) we get

Z: qnn’ll{ + ”Z’ Z

nlopd 17€8aNEn’

A — M)/22; =0 (20)

YUTZE CHOW

or
JE 8N 8wt 20 (= M)/20; = po. (22)

From (18), we conclude immediately
vlj, lj’ SENARW 20 0narn; = 0o Qanruye (23)

There appears to be a difficulty in generalizing (23)
further if there is no internal line connecting directly
two vertices v, and v,., i.e,, if

$ N8 = O, (24)

where @ denotes the empty set of lines (may con-
tain vertices!).

However, this difficulty can be easily solved by
defining A, — A, in the following formal way:

A= he = — M)+ (g — M)

+ oo+ — M), (25)
where
8&MNS, = O,
8, M S,. # O, (26)
and 8 M 8y #= @.
Since the above technique is good even for
8. N8 = O, @7

(18) and (25) lead to the conclusion

QiGunus = ¥ Famne T Xsnimews + * o+ 0, 8nrnsa

(28)
We can also write (28) in the form
VEEG: D a,8; =0 (29)
Viee
or more precisely,
VEEG: X agels =0, (30)
Yiee

which is just one of two Landau-Bjorken—Nakanishi
conditions, namely

Ve E G : X aleq; = 0,

j€C

3D

where G* denotes a reduced graph of G.

The only difference between (30) and (31) lies
in the fact that in (30) we are dealing with the
ortginal given Feynman graph, while in (31) we are
dealing with all the possible reduced graphs as well
as the original graph. Therefore, it is clear that,
when the original graph is considered for (31)
(i.e., when one studies the so-called “principal
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singularities”’), we can say in this case that (31)
has actually nothing to do with the singularity con-
dition in view of (30). The singularity condition
is rather given by the other equation of the Landau—
Bjorken—Nakanishi conditions,”® namely

Vi€ [J]:mi+ g =0, (32)
where [J] denotes a subset of internal lines
{1, --- , {J} and the left subscript ¢ means its
complement. We note that the ;’s in (31) are fixed
due to the presence of condition (32) and the re-
quirement & = 1. But, in (30), the a is of course
entirely unspecified.

From the mathematical point of view, (30) or (31)
is merely a trick to do integration with respect
to {k}, and thus, strictly speaking, they alone have
nothing to do with singularities. The singularity
conditions are essentially governed by (32) and (31)
together; it is therefore clear that the way to state the
singularity conditions is by no means unique in
this manner.

Due to the property shown in (30), it is convenient
to introduce E,.., E,, and E,. by

E.. =E,—E, € 8N 8, (33)

= & Qnn'uis

and we note, that, except for its difference, E, alone
is not, well defined.

For two vertices whose stars have no common
line, we can define E,,. by means of the method
used in (25), e.g.,

E.. =E,—E,.
= (En - Em)
+ (Em - Em) + b + (Enr - En’)‘ (34)
From (20),
¢( l(dl = (g}
J

Z 1(qz + m:)

% Z aq“w+ Za, mi, x.'IES ns,

=3 Z (B, — E, )q“ul + Za:mz
or

V= E Enqnnm + Zar

n.n', ke

7 Landau, Nucl. Phys. 13, 181 (1959).

8 Bjorken, Stanford Umversnty preprint (195

9 N. Nakanishi, Progr. Theoret. Phys, (Kyoto) 22, 128
(1959).
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Using (12), we obtain
V=2 Ep.+ 2 a;m]. (35)

In order for (35) to be meaningful, we can set

Ey =0, (36)
where N denotes the Nth vertex. Thus,
vn : E.y = E,. @37
Therefore, (35) can be written as
V= 2 Eapa+ 2. (38)

Now, let us consider the modified graph, G"”,
obtained from the original Feynman graph by
deleting all the external lines except those at the
external vertices r and s to which we now assign
the new external momenta -1 and —1 respectively.
The quantity E{? is then defined as

ELY = E,\guq0n (39)

and we also introduce the notation
E'” =E;” = E,eguo. (40)

The explicit meaning of E* is
E"" = o[ u]amacnr. (41)

The following properties are either self-evident or
are easily shown.

(a) Symmetry:

E") = 0, 42)
E.> =B 43)
(b) Antisymmetry:
E.Y = —E.°, (44)
E.> = —EX; (45)
(¢) Reciprocity:
B =E; (46)
(d) Contraction:
B> + E5’ = ELD, 47)
E.> + Ew’ = ELP. (48)
Further, there are following properties.
(e) Proposition:
Bonr = ZN:E,E,'.'"""IJM, 49)

m=1
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where °N denotes the total number of ezternal
vertices.

Proof: This is obvious from (33) and the definition
of E{m,

nn’

(f) Proposition:

E(mn) = E(mr) + E(rn) — ZE’(:r). (50)
Proof:
Right-hand side = ES” + ES® + 2B
— (E(mr) E(mr)) + (E(rn) E(mr)

— E(mr) +E(nm)
— E(mr) + E(m)
= E&m™ = E™ = left-hand side,

where we have used antisymmetry, reciprocity and
contraction properties. Q.E.D.
In the introduction, the V-function is expressed
in the form of (6). However, for our present purpose,
it is more convenient to write (6) in terms of external
momenta explicitly using incidence matrices' *:*'*°:

J N-1
= z.:; aim? Zl (;': l)rm "PaPn’ (51)
el n,n'=-
with
hu ce hl.N—l
k= : , (52)
hN—l.l tee hN—l.N—l
J
honr = ; e,-,.-e,-,.:/a;, (53)
where
€;» = 0, if the internal line j does not initiate
or terminate at the vertex n,
€;x = 1, if the internal line j initiates from
the vertex =,
and
¢;» = —1, if the internal line j terminates at

the vertex n.

We would like to write (51) further into the form

J N
V = Z aim? - Z wml’pnpn’ (54)

i=1 a.n‘=]l
(n<n’)

with W, = W

To find w,,. function, we use (51):

10 Y, Chow, J. Math Phys. 5, 1255 (1964).

CHOW
J . 1 N-1 A J .
V = Elaimi + z E Aml’pnpn’ = Zaimi
im ni=1 i=1
1 “w_1 -1
h[ Z‘_ ) 2400 DuDn E A,.np.] (55)
’(‘uﬁ>n)
Using momentum conservation,
N
Pn = — Z D (56)
(:;‘:})

thus (55) becomes

J
V= Za,-m?

i=1

1 [ Z_ (Ann+ An ﬂ'_2Al“l )pnpn

n,n =1
(8’ >n)

+ NE— Anpap w] (57)

n=1

Comparison between (54) and (57) gives im-
mediately

Wpin = Wppr
= (Ah, + Ak, — 2AL) /R, forn,n’ <°N;  (58)
Wyn = Way = Am/h, forn < °N. (59)

Similarly, through some arrangement of indices
one can express w,, in terms of ¢; and 9,,. The
derivation is given in the Appendix.

Now, we are in a position to find the relationship
between the w,, functions and the E™’ functions.

From (49), we have

E, - E,. = E Ex pa, (60)
n'=1
that is,
.N 'N
Z}. (Eu - En")'pn = 2'-1 PnDn - (61)
But, since
s i
> 0B = (3 0.)F. ©)
thus, (61) becomes
IN IN e
1;1 En a = nz’-l E;:"" )pnpﬂ"
By virtue of (35), (60) gives
N
= Zami+ 3 BN pp..  (63)

°N (there is

For convenience, let us put n” =
no loss of generality); thus

V= Za,mf—l—

N-1

Z E(':N N)pnp”

n.n’=1

(64)
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Comparison of (64) with the first equation of (55)
gives the most interesting feature:

ES&™ = (Bynk. (65)

Due to this idenitification, we write down the follow-
ing expression in complete analogy with (57):

N-1 R e Ve
- E (E(" m + E(" " — 2E1(|':NN))pnpn'
s
N-1 R
—_ 2 E(n N)Pnp'zv- (66)
Comparison between (54) and (66) yields
w,.. = w,, = EB"Y" +E(»"N)
— 2E%™ form,n’ < °N 67)
and
Weyy = Waey = E®™ forn < °N, (68)

which shows E®™" nonnegative since w,,- is.
Further, by using the property (50), we can
simplify (67) and (68) into

(69)

which also defines w,, = 0, since E™ is obviously
zero, Thus, the V-function can now be written
simply as
J
V = E a,-m? _

jm1

VN, Warn = W = B,

N

E E(nn’)p"pn, . ’

n,n'=1
' >n)

(70)

Since we have no intention of going into further
development parallel to Wu’s work,® we shall merely
summarize here some of his majorization results
with illustrative graphs.

Notations

(1) When a Feynman graph @ is majorized by
the graphs G’, G”, and G’ together, we write sym-
bolically:

G o ¢ _*1 e _|°_ G,
where o> denotes ‘‘being majorized by’ and a
circle on the plus sign means it is not the ordinary
sum but

5)0 D g)al n Sa" n 3)0:':,
where D means the domain in which min V¢ > 0.

(2) (a) A subgraph obtained from @ by deleting §
is denoted by G(T:j).
(b) A reduced graph obtained from G by
shrinking ;¢ is denoted by G({;7).
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(c) A reduced subgraph obtained from @ by
deleting ;5 and shrinking ;¢ is denoted
by G(T:jl:d).

Lemmas

In the following lemmas all the graphs, on both
sides of the majorization signs (e—), are required
to be strongly connected (i.e., there is no one-particle
intermediate state).

(D Vit 1 G o> Qi5) + G(119). (71)

Fi6. 1. Majorization corresponding to expression (71). In
all figures, the following change of notation is made respective
of all letters: oJ in text is shown as J with an overbar, ¢ is
shown as j with an overbar, ;J is shown as J with an underbar,
and ;j is shown as 7 with an underbar.

(IT) Let @ = Ui, G; and
v, : G; NG = v, for any 7 # j,
then

G o> GG + GG + -+ + G(LG). (72)
.

F1a. 2. Majorization corresponding to expression (72).
(I1I) If 3,8, = £ \U ;jin G, then
G oG T i) + 6L+ 6 i, ).

; x 3
H®+®+®

F1e. 3. Majorization corresponding to expression (73).
av) I, for v, = v,.,
38, and 8, :;8, = A\ i,
then
G o G i, 1) + G i by 59) + G i3 L g, B
el k) +6e0 kg (79

(73)

iSa = 1A\ 4,
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Fre. 4. Majorization corresponding to expression (74).

The above lemmas are derived by Wu under the
assumption of the equal-mass case. Certain gen-
eralization can be made at the cost of some imposed
restriction on mass value. Some limited generaliza-
tion is carried out by Boyling® by taking into con-
sideration of baryon number conservation, and we
shall not discuss it here since the method follows
closely that of Wu.

III. NAKANISHI'S PATH METHOD OF
MAJORIZATION

Before proceeding with our discussion of several
important theorems of Nakanishi in connection with
his Path method of majorization, we first introduce
the concept of “equal-mass graph.”

Let m; and M be the masses of internal lines and
external lines (°N = 2), respectively. Further, we
assume

Vi :m;/M = a rational number, by approximation.
Therefore we can write
Vi:m;/M = ¢;/d;, with ¢; and d; as integers.

Next, let us find the least-common multiplier, =,

of the set {d;} and define a mass

m* = M/n. (75)
Further, we define

n; = ne;/d;, (76)

which has the obvious property of n; being integers
and

. _— *,
V,-.m;—mn,-.

This provides a means to replace each ;j € @
by a bundle of n; new internal lines; each new line
now has a mass m*. This modified graph, denoted
by G* will be referred to as the equal-mass graph
of G.

For convenience of discussion, let us introduce
the notation PX for a constant momentum of the

CHOW

equal-mass graph. Here the subscript j corresponds
to the original line ;5 of the original graph and pu
stands for the multiplicity resulted from splitting
1j into many lines in the equal-mass graph. Using
this notation, we state the following.

Proposition:

If 3{PA} : m* + P%* > 0, Vj, u for G* then

(P} :mi +P; 20, Vi€gG. @7
Proof: By assumption we have
nym** + 0P > 0, Vj, ufor G*,
that is,
mi; +nP¥ >0, Vi pforG, (78)
Thus, if we simply choose
Vij € G :P; = nPL,
then (78) becomes
Vij €E G :mi + P} > 0; Q.E.D.

A. The Self-Energy Graphs

The case of °N = 2 corresponds to the self-energy
graphs. Due to the property of (77) we shall study
G* instead of @, for the self-energy graphs. First,
let us convert the condition of a stable particle
into the language of G*. Stability of the particle
of a self-energy graph @ means

VSEG: 2 mi>M
i€d
that is,
VI EQ: D mn; > mm
icd

or

VI EG*:7(9) = n, (79)

where r(9) denotes the total number of internal lines
contained in the intermediate-state set 4.

The following Path theorem for a self-energy graph
is due to Nakanishi.

Theorem N .1:

If the particle of a self-energy graph, G, is stable,
then

3{01; et :(Pn} E G0N0 = ®, Vi, j, (80)

where all paths are assumed to initiate and terminate
at the two external vertices of the graph, and =
is defined by expression (75). The set of n disjoint
paths will be denoted simply by {®}.
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Praof: The proof will be given by means of math-
ematical induction (with respect to J). First, for
the case of

V4 E G* : 1(9) =, (81)

we have exactly n paths; thus (80) is true,

Next, we assume the theorem to be true for
7{(9) < J and proceed to show that the theorem
is true for r(9) == J to complete the proof.

To proceed the proof we consider systematically
the different possibilities.

If the given graph has the property

vy € G* :HiJ‘EEgr 82

then obviously this line ;7 can be deleted without
effecting the stability condition (79). After deleting
such lines, we obtain the condition

VieEG*:39 D 5. (83)

A graph with the property (82) may be further
classified into different cases.
(1) Case of G@* = 8s, \U 8,.: A typical example
is given in Fig. 5.
Thus, we can easily see

vij E G* : ij e S'. V) s'" (84)
and
Vn, n': 13?. N 1521 = (. (85)

Let there be totally r internal stars, then we can
write

s=Gsnnisu (U)o
EL2)
where
¢ = either §} M §», or 8§ N 8o, (87

The stability condition (79) now becomes

Fia. 5. An example of G*,

<1

} [{3]

v

Fra. 6. G* of Case (a).

52X

(€3]

(8o, M 84) + X min 1) 2 n

tm)

(88)
with
min 7(8)) = min {7(s] N §,), 7( N $.,0}. (89

Condition (88) gives the number of disjoint paths
existing in G*; it is greater than n, thus (80) is
proved in this case.

(2) Caseof 3:j € G* 14j € 1(S+,) U 5(84,)).
In this case, there are two possibilities;
(8) Vij &€ G*:19 3 jwith »(9) = n. 90)
(b) 1] 1 V4 D ij with 7(9) > n. (on

However, case (b) is reducible to case (a) if we
simply delete all those ;j satisfying (91). Thus, only
case (a) shall be analyzed below.

Before further discussion we introduce here the
concept of “opening” an internal line. To open an
internal line, we artificially insert a vertex into this
line and then delete this vertex so that this snternal
line now becomes two new external lines. The opera~
tion “opening” will be denoted by the symbol £

In case (a), the graph G* can be drawn in the
form as shown in Fig. 6 {a) where we have

G =GQF\Jg\JGr, 92)
with
GENg=0QandG Ng=0Q, (93)

here 4 satisfies (90). By opening 9, we get two
separate connected graphs G and G.* of Fig. 6 (b).
On the other hand, by shrinking G¥ or G% we get
G\ and G,}, of Fig. 6 (c).
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We now have
s €GY < 79 € GV (94)
and
s Eeq]<As €G] (95)

To use mathematical induction, we first assume

1{Plo € G, (96)
and
1{e}o € G, 97
By virtue of (94)-(97), we thus conclude
{ele € G%; Q.E.D.

Theorem N.2: For a self-energy graph with stable
particle,

3{P;} :m; +P; >0, VijEQG. (98)

Proof: Since Theorem N.1 guarantees n disjoint
paths in G* thus we can choose the constant mo-
mentum in G* to be (p is the external momenta,
and single subscript is used for P for simplicity):

Vit € {®lo: P¥ = p/n (99)
and
Vit € {®lo:P¥F =0, (100)
which lead to
Vit € {®}p: m** + P} =0, (101)
Vit & {®lp:m* + P; = m* > 0; (102

thus (98) is established for G*. But we show in
Sec. IIIB that if (98) is true for G* then it is also
true for G; Q.E.D.

B. Vertex Graphs

The case of °N = 3 corresponds to the so-called
vertex graphs (Fig. 7). In studying the self-energy
graph, there are two very distinguishing features:
first of all, the two external momenta are equal due
to conservation, secondly, the particles of the ex-
ternal lines must be the same. These features do not
exist in the vertex graph.

Fra. 7. A vertex graph.
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In order to use the method of self-energy graphs
to vertex graphs, we have to impose the restriction
of parallel external momenta for a vertex graph, i.e.,
we can write:

P, = ¢p, v = A, B, C, (three vertex labels), (103}

where ¢, are the proportionality constants.
By choosing the following 4-momenta assignment:

p.= (M, 0,0,0, v=ADBC, (104

then we can define ny, ng, and n, by first finding
a mass m* such that any element of the set
{MA; MB) MC; mly ] ml}

M, = n,m*, v=A,B,C,
s

(105)

= * -
m; = n;m*, ]._.1,...

where n, and n; are integers.

Then an equal-mass graph G* can be constructed
by simply changing each tnternal line ;j into n;
equal-mass lines, and changing external lines "A and
‘B into n, and np equal-mass lines, respectively.
Each new internal line has a mass m* and each
new external line has a mass M. Then, by virtue
of (77), it is sufficient for us to study only G*.

Next, we define 9, (v = A, B, C) in G* as an
intermediate state set that, if deleted, separates the
external vertex » from the other two external
vertices.

The following theorem can be easily proved.

Theorem N.3: For a vertex graph @, with external
vertices 4, B, and C, and parallel external momenta,
if

Vs € G* :7(94) 2 na,
Vgg E G* . T(gg) _>_ nB,
Vi € G* . 7(90) Z e,

then (1) In, disjoint paths from A to C; (2) dns
disjoint paths from B to C; where ny, ng, n¢, are
defined by (105).

Proof: First, we note that the conservation of
4-momenta gives

Neg = Na +nB,

since our choice of momenta is (104). Now, by
identifying together the ends of the external lines
of vertices A and B and by introducing a new ex-
ternal line °C”’, we get an artificial self-energy graph,
G*, as shown in Fig. 8. The n. is, therefore, just the
n of this artificial self-energy graph. Then, in G*/,
there are four possible ways an intermediate-state



MAJORIZATION OF

F1a. 8. Forming of an artificial sekllf-energy graph from a vertex
grapi.

set, 9/, can separate G* into two parts, as shown in
Fig. 9.

‘We have the following cases, as implied by Figure 9:

Case (a): 94 = d¢; thus 7(d;) > ne =
assumption;

Case (b): 9] has 7(9]) = (94) + nz =
ng = ne = n by assumption;

Case (c): 94 has 7(94) = +(95) + n, >
np = n¢ = n, by assumption;

Case (d): 9% has r(94p) = nas + nz = n¢
from graph.

n, by
n, +
ny +

Il
S

Q)

by

) o

Fi1a. 9. Different possible intermediate states.

thus in all cases we have
(') 2 n,

‘which leads, by Theorem N.2, to
J {®} ¢ from A to B.

'This implies that there are totally n, and n; disjoint
-paths from 4 to C and from B to C respectively.
Q.E.D.

g’ = either 9, 95, 9%, 945,

C. The General Case of any

For the general graph with °N external lines, we
-classify the external lines as

b af} = a}

) ,br'} ’

the incoming external lines : {a,, -+
b.

Further, let an intermediate-state set 4,, if deleted,
;separate the @ into two sets:

I

the outgoing external lines : {b,, -

{aly sty Gy bl: ’bln} = °h
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F1a. 10. A general graph.

and

{ak+1’ Tty Gpry bk'+17 *

which is depicted in Fig. 10.

Next, for the case of parallel external momenta
we can again choose the momenta as (104) and also
define n; similar to (105). Further, we introduce
the concept of capacity of in-flow and out-flow of
external momenta, n;, and 7., as defined by

nin = Z n-‘
2i(°%N %)

and

Nout = :E: n;
v (®h\ %)

and the total capacity of flow, n, which is a general-
ization of the n of the last sections:

n = :z: ng; =

then we have the following theorem.
Theorem N.j: For a general Feynman graph with
parallel external momenta, if

V4 E G 7(9) = |ni

(106)

n;,;
3

[

(107)

- 1zoutlg
then

3 {(PU e ’(Pn}QDEG*.

Proof: We shall make use of mathematical induc-
tion with respect to the number of effective external
lines.

First, let us identify together all the equal-mass
tncoming external lines incident upon any two
vertices, say a, and a,, and introduce a new ex-
ternal line, a2, to the new vertex, as shown in
Fig. 11,
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By opening the set of all internal lines of the
star 8,,, we get back G* from G*; thus

3 n,, disjoint paths initiating from the vertex a,,
Jn,, disjoint paths initiating from the vertex a,,

and 3 n,, disjoint paths initiating from the vertex a,.
Therefore, the total number of disjoint paths is

r
> ie.,

i=1

vie> G

which is equal to n, as according to the definition
(106). This proves that the statement is also true

The different possible intermediate-state sets for for ‘N external lines. Thus it completes the math-

G*, as shown in Fig. 12, are

(1) 9!=4d,,thusbyassumptionr(d9’) > |nin—Nous),

(2) 94: we have 7(d3) = n,, -+ n,. (108)
But,
Ini. — Nous| = "”(‘;\_"') Ny — ”ﬁ(‘;\%) n;

= |0, + na) — Ol; (109)
thus (108) and (109) satisfy
7(92) > I — nouel-
(3) 95: from the graph of Fig. 12, we have
7(93) = na, + 7(97)
= N, 4 7(9))
> Ny + [Min — Bowe + N,
> i — Nowl,

where, in this case,

N = 2 M
v (*h=%,)N%

and

Nout = Z o n;.
2ie("h-%,)N%

(4) 9.: Similar to the above case, thus
7(9) 2 i — Towsl.
Therefore we conclude
V' E G i 1(8) 2 ua — Noul-

Using mathematical induction, by assuming (107)
is true for ‘N — 1 external lines, i.e.,

q {@l) R ) (Pn}(lb S G*'.

ematical induction. Q.ED.

IV. THE MAJORIZATION METHOD OF SYMANZIK
AND LOGUNOV ET AL.

For the convenience of discussion, let us write
expression (51) into

V=X+H,
where we have introduced the notation
J
X=3 am

=1

and

N-~1 -
H = nnz'-l (h ‘)nn’pnpn'-

The region of analyticity D is given by
PE Dif Va; 20: V(a,p) 20. | (110)

. IS
Nt
-

————

RN
=<
Lo

Fia. 12. Different possible int«}alrmediate states for a general
graph.
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By introducing
3%, p) = —H/X
and
5*(p) = Sup {K*(a, p)},

ai>0

{110) becomes
p E Dif 1*(p) < 1.

Majorization then means, in this notion,

G, — @G, if Hi(p) > 3(p), Vp E E,

where G, and @, are assumed to have the same set
of external momenta, p.

We note 3¢(p) is a homogeneous function of
degree one, and further

3¢(p) if p€&E.
One can show the conjugate norm to 3¢(p) is
%) = Inf {[X@H(, n)]'}.
aqz

is a norm

Now, we are in a position to give a summary of
results due to Symanzik® and Logunov et al.®;

Theorem A:
Vit &G :G@ -G ) ifp €EE. (111)

Remark: Comparing (111) with (71) we can see
that in relaxing the Euclidean condition, an extra
graph (reduced graph) is required to majorize G.

Theorem B: Let @ € @ be a loop consiting of
r -+ 1 internal lines, r of the lines have mass m
and one line has a mass m/, with m > m’. Let ¢
be a modified graph obtained from G by exchanging
m = m' for those lines belonging to @. Then

G e— .

Theorem C: Let G, and @, have the same set
of external momenta, p. Let their norms be 3¢,(p)
and 3C,(p). Then

G, -G,
if and only if

for VpEE
%,(z) < 3a(2).

Theorem D: A graph G is majorized by the set
of graphs {@,, --- , G,} if

min  {3.(2)} < %@).

Sml,ver
V. CONCLUSION

For the three different majorization methods dis-
cussed in the previous sections, the method of
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T. T. Wu has the advantage of imposing no
Euclidean requirement for the external momenta.
However, there are restrictions like values of masses
involved, etc. On the other hand, the path method
of Nakanishi and the algebraic method of Symanzik
and Logunov et al. are applicable only if the set
of external momenta is Euclidean. However, the
path method has one distinguished feature; that is,
it is a method of very general nature and further,
this method can meet easily certain conservation
requirements, like Baryon number or charge con-
servation, due to the existence of some paths as
required by the method. The Symanzik method and
its extension by the Russian workers are essentially
algebraic; majorizations can be established if one
can show that the required inequality in terms of
norms are fulfilled. Thus, they are not as general
as the path method. It is our hope that especially
since the path method and the Symanzik method
are both restricted to the Euclidean set of external
momenta, one should be able to find out whether
there is a region of overlapping of these two methods
in a quantitative manner.
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APPENDIX
J J
V= Zaim? + E%‘P?
i=1 i=1
N L J

1

U E DD ;0818 1 NinMyonBrprs
nm=1 1,0 =1 §,i=1

(AD

The last sum of the right-hand side of (41) can be
split into three parts:

pINERS
2 )=

n<n’

2

n>n’

A;.

}EAz;

Writing A, into the form

oy
4, = Ecnp?n

n=1
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and due to momentum conservation, we have

*N
D =

n=1

N °N

,Z Cnpnpn ’

N n—1 N N

= =2, 2 PP — 2, 2. CiDiPw

n=1n'=1 n=l n'=n+1

°~N
= — 2 (a + c)ppur;

n,n' =]

(n'>n}
thus
°N
Al T - 2 An'a,'(xivgng,"z'
noaa'=l I, 1,55’
{n’>n)

X (7?,‘“7?5'» + ﬂin"?:"n’)pupn"

Therefore, the three sums 4,, 4., and 4; together
give

°N L
1 J

> 2 D Aoy 88 20w

U nan' =t 1,27=) § ' =]
(n’'>n)

= Binfita ™ ?iu'ﬂi’n')pnpn'- (-AZ)

CHOW

As to the term Y ; a;P?, it contributes
N J
v aininﬂin’pnpn'

nnw-l =

w
= Z 20 in0in' PriPn’
LR
(n’>n)
°N J

- Z E ai(’]?n + n?n')pnpu’

#n.n'=1 jmi

4 ai(ﬂin - "fn’)zp;pn" (A3)

nn'=] jm]

Summing up (42) and (43), we obtain

J
Won: = Zlai(nin - ’72'”’)2
=
5 L

1
+~th 2 A 88

§.97=1 1,1'=]
X(an'n’?s"n’ = BinNitn 17:’»'77,"..');
n,n =1, ,°N, (n #n'),

which, therefore, also furnishes an expression of
E™" in terms of ¢,;; and 7;,.
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A cylindrical form of the Friedman metric is used to obtain nonstatic infinite cylinders of inco-
herent fluid. The vacuum metrics exterior to the cylinders are determined from the hypothesis that
the metric tensor and its first partial derivatives be continuous. This hypothesis is applied by re-
quiring the continuity of the first and second fundamental forms of the boundaries of the cylinders.
The exterior metrics are nonstatic and may be expressed in the Einstein~Rosen form, and equations
governing their behavior are derived. It is found that the exterior metric carries a flux of gravita-
tional “C energy,” the direction of which in the Einstein~Rosen frame is the same as that of the sur-

face of the cylinders.

1. INTRODUCTION

HIS paper is concerned with finding the gravi-

tational field surrounding certain nonstatic in-
finite cylinders of a zero-pressure perfect fluid. We
use the general theory of relativity throughout,
together with the usual differentiability and the con-
tinuity hypotheses.

We do not treat the general problem of the cylin-
drically symmetric zero-pressure fluid, but restrict
ourselves to a special class of fluid motions. This
special class is obtained by cutting infinitely long
cylinders of fluid out of the well-known Friedman
universe, for whose metric we have obtained a
cylindrically symmetric form.

" The Lichnerowicz junction conditions are used
to ensure the existence of an exterior vacuum field
surrounding the column of fluid, such that the con-
tinuity conditions across the hypersurface S sepa-
rating the fluid from the vacuum are fulfilled. These
continuity requirements then determine the vacuum
field up to a transformation of coordinates.

We do not use the continuity conditions as such,
but rather an invariant form of them; viz., the con-
tinuity of the first and second fundamental forms
intrinsic to the hypersurface S. This enables us to
avoid the difficult problem of actually finding a
system of coordinates in which the continuity con-
ditions are fulfilled explicitly.

The exterior vacuum metric is expressible in terms
of a diagonal metric form found by Einstein and
Rosen, and equations completely determining the
metric tensor in this form are derived. However,

* This work was supported by the National Science
g‘ggndation and by Air Force contract number AF 04(695)-

}National Science Foundation Postdoctoral Fellow
1964-65.

the complexity of these equations prevents us from
actually solving them.

The vacuum metrics all turn out to be nonstatie,
and it is shown that there is a flux of gravitational
radiation in the form of “C energy’’ associated with
these fluid columns. We demonstrate that, if the
direction of time is chosen so that the columns are
collapsing toward the symmetry axis, then, in the
Einstein~Rosen exterior frame, the flux of “C en-
ergy’’ is also inward.

In Sec. IT we present the cylindrical form of the
Friedman metrie, and the transformation reducing
it to the usual spherical form is given. In Sec. III
the general problem of finding the exterior vacuum
metric is discussed and the results of the application
of the invariant continuity conditions presented.
The actual calculations are quite complicated and
are given in the Appendix, where it is demonstrated
that the Einstein—Rosen metric form may be used in
the vacuum, and a set of equations governing its
behavior is derived. In Sec. IV this set of equations
is further investigated, and we state how, in the
Einstein-Rosen form, they show the exterior metric
is exactly determined. Section V is devoted to a
study of the radiative properties of the cylinders,
carried out as mentioned above. A few remarks and
suggestions for further work then follow.

We use the following conventions: We take the
space-time metric to have signature +2 and use
Latin tensor indices for the range 1, 2, 3, 4. Greek
indices indicate 1, 2, 3. We use gravitational units in
which G = ¢ = 1, and write the field equations ag
G,',' = R,’f —_ %Rg” = _87I'T.',', Where R” is the
Riccei tensor and T';; the energy-momentum tensor.
Covariant differentiation is denoted by a semicolon,
and partial differentiation by a comma.
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II, FRIEDMAN UNIVERSE IN CYLINDRICAL FORM

The cylindrical form of the Friedman universe may
be conveniently written as

‘_ds2 = @i dx'- dxi

= eg“)[l_%ﬁ + 1 —kHdE d¢2] — dt*,
(n

where g(f) is an arbitrary real function of the time ¢,
and %k is any real constant, positive, negative, or
zero. If k > 0, we must have 0 < r < k™4 if k < 0,
0<r< o Always, —® <2< «,0 < ¢ < 2m,
The allowable range of ¢ must be such that g(¢) is
real and finite.

We now show that the metric (1) is the same as
the Friedman metric, which may be written as'

=2
~ds* = e"‘"[-l—(_i_r-k—fﬁ + #(d6” 4+ sin’ 6 d¢2)] - at’.
@)

The reader may easily verify that the following
transformation reduces (1) to (2):

r = fgin 6, z = [ 6),

where

8f/8F = cos O(1 — k¥ sin® 0)7'(1 — kF)7?
and

31/86 = —7sin 61 — kP — k7 sin® 6)7.

One may show that 8°f/8007 = 9°f/8798, so that the
above differential equations are integrable. The fact
that a cylindrically symmetric transform of (2)
exists should surprise no one, since it is well known
that (2) is translationally invariant.’

A more abstract study of metrics of the type (1)
has also been made by Kompaneets and Chernov;’®
however, the connection with the Friedman universe
was not mentioned.

Calculation of the conservative Einstein tensor
G,; for both (1) and (2) gives the field equations*

Gl = G) = G; = (&°g/dP’)
+ 3(dg/dd)’ + ke™* = —8mp, 3)
G = 3(dg/dt)* + 3ke™ = 8re,
Gi=0 for i35 j

1 R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Oxford University Press, Oxford, 1962), p. 370.

* Ref. 1, pp. 372-375.

$A S Igompaneets and A. 8. Chernov, Zh. Eksperim. i
Teor. Fiz. 47, 1939 (1964) [English translation: Soviet Phys.-
JETP 20, 1303 (1965)].

+ Ref. 1, p. 377.

]
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where p is the pressure, and e is the total proper
energy density per unit volume. Equations (3) still
leave room for assigning an equation of state p =
p(e), which then implies a single differential equation
for g(t).

III. GENERAL MATCHING PROBLEM

We now consider the problem of cutting out an
infinitely long cylinder of material, whose motion
we take to be governed by the cylindrical Friedman
metric (1), and surrounding it with the appropriate
vacuum field. In order for this to be possible, we
must satisfy certain well-known continuity condi-
tions® at the hypersurface S separating the material
from the vacuum: These conditions require that
there exist an admissible coordinate system in some
neighborhood of S with respect to which the metric
tensor g;; and its first partial derivatives g.,, are
continuous across S. These conditions, in turn, imply
the Lichnerowicz junction conditions,® which state
that for a perfect fluid the pressure must vanish
on S and that, if »; is the unit vector normal to S,
the fluid 4-velocity »’ must satisfy u'n; = 0 on S.
It has been further shown’ that, given an interior
solution of the field equations for which there exists a
hypersurface S on which p = 0 and u'n; = 0, then
there exists a physically unique vacuum metric
on the other side of S for which g,; and g;; . are
continuous across S.

Let us mention that there are two equivalent ways
of representing the hypersurface S. The first is to
find a function f(z’) such that § is the locus of all
points z’ satisfying f(z') = 0. The unit vector nor-
mal to S (for spacelike S) is then n; = {,;(g"*f .:f )7L
The second way is to find a parametrization of S
in terms of three coordinates u* on S: ' = z'(u®).
The equation fz’(4*)] = 0 then becomes an identity
in the u*. Of course, the choice of the function f(z?) is
not unique, and one may change the direction in
which #n; points by changing the sign of f(z'). We
use these two representations interchangeably in the
discussions that follow.

What is the situation for our interior metric (1)?
We consider a cylindrical hypersurface represented
by the equation f(zf) = r — r, = 0, such that
kr; < 1, so that the outward-pointing normal is
n; = (911)}5;-

Now, since we have everywhere u’ = &{u’, the

5 A. Lichnerowicz, Théories relativistes de la gravitation
(Masson et Cie., Paris, 1955), pp. 3-5. J. L. Synge, Relativity:
The Geperal Theory (North-Holland Publishing Company,
Amsterdam, 1960), pp. 39-41.

¢ Lichnerowicz, Ref. 5, pp. 63-64. Synge, Ref. 5., p. 187.

7 Lichnerowicz, Ref. 5, pp. 27-33, 63-64.
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condition u'n; = 0 is obviously satisfied on S. What
about p = 07 Since the pressure is a function of the
time only, this can only be true for » = ryif p = 0
everywhere. This is the case of incoherent matter,
or “dust.” Reference to Eqs. (3) then gives the con-
dition

—(&¢/dt) — §(dg/dt)* — ke =8mp =0, (4

which determines g as a function of time. The reader
is referred to standard texts® for a discussion of the
solutions of Eq. (4).

Thus if we choose g(t) to satisfy (4) and pick
r = 7, as the hypersurface S, we may be assured that
there exists a physically unique solution of the vac-
uum field equations in the region r > r, for which
g:; and g,; , are continuous across S. We demonstrate
in the next section that the desired vacuum solution
is one of the class of cylindrical metrics known as
“Einstein-Rosen waves,” which may be written in
the form®

—ds’® = &7 (dp? — dr)

+ 62\# dzz + p2e—2\0 d¢2’ (5)
where v and ¢ are functions of 2* = p and z* = =
The vacuum field equations R;; = O then give the

following equations’ which must be satisfied by
¢ and v:

v =)+, =29, (6

where we use a prime for d/dp and a dot for 4/9r.

The integrability condition 8*v/drdp = 8°y/dpdr
then implies the equation
1 )
¢”+;¢'—¢=0, @)

which is itself, by the way, also contained in R;;
This is the cylindrical wave equation.

Note that, since it is not evident that the metric
(5) comprises all cylindrically symmetric vacuum
solutions, we cannot say a prior: that the vacuum
‘solutions which we are seeking may be written in
this form. We show, however, that such is the case
by considering the first and second fundamental
forms intrinsic to 8. Both fundamental forms are
defined by using a parametrization of S z'
z'(u', ¥, 4®) in terms of three coordinates u* on S.

The first fundamental form is the metric which S
inherits from the space-time in which it is imbedded
and may be written in terms of the »* as

8 Ref. 1, pp. 413, 416. See also L. Landau and E. Lifshitz,
Théorie du champ (Editions de la Paix, Moscow), pp. 445-447,

*J. Weber, General Relativity and Gravitational Waves
(Interscience Publishers, Inc., New York, 1961), p. 99.
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Y@ = g:(02°/0u*) 9z’ /o). (8)

One defines the second fundamental form' via
the unit vector n; normal to S as

Q,,w*) = —n, (8z*/0u")(8x’ Jou"). 9)

From now on, we use the symbols (—) and (+)
to designate indexed quantities defined, respectively,
in terms of the interior and exterior coordinates.
Note that since we are dealing with two different
regions of space-time having only S in common (the
one covered by the interior coordinates ‘¢, and
the other by the exterior coordinates z‘*’?), we
obtain two different sets of fundamental forms, de-
pending on which coordinate system we use to
evaluate them, and, of couse, depending on different
parametrizations of S with respect to the two sys-
tems. We denote these two setsv(;”, @57, v&, 94,
in obvious notation,

We now introduce two hypotheses which we use
in connection with a necessary and sufficient con-
dition for the metrics to be compatible across S.

First, we suppose that the ¢!’ and ¢!/ are
separately continuous up to and on 8 in their respec-
tive domains of definition. Secondly, we suppose that
we are given two parametric representations of S,
2 = R, u?, o) and 27 = h(+”(ul, o, ),
such that all of § is covered by the same domains of
the 4* in both cases. The A‘*’(u*) are supposed to
have continuous second partial derivatives.

Then if the above hypotheses are true, the fol-
lowing proposition is known from the theory of
continuity conditions'': A necessary and sufficient

condition that the two metrics ¢{;’ and g{J> be

if
compatible across § is the equality of the two sets
of fundamental forms as functions of the u”:
T = vPE), 9w = 8w,
These equations have certain obvious invariance
properties and establish the existence of an admis-
sible coordinate system in some neighborhood of
8§ (for which the g,; and g.; ; are continuous across S)
and permit us to skirt the tedious problem of actually
having to find this admissible coordinate system.
We now present the results of the above matching
conditions for our problem, the calculations for
which are rather tedious and are relegated to the
Appendix. They show that the metric (5) can be
matched to the collapsing cylinder whose boundary

10 L. P. Eisenhart, Riemannian Geometry (Princeton Uni-
versity Press, Princeton, 1949), pp. 146-150.

1 G. Darmois, “Les equations de la gravitation ein-
steinienne,”’ Memorial des sciences mathématiques XXV (Paris,
1927), p. 30.
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Sisr = ry in the frame (1), where we must have
a = kry < 1. As stated above we always take g(z)
to satisfy the zero-pressure equation (4) and param-
etrize S in the frame (1) via 27’ = b7’ (4*), where
2 =r =1y 2= = 2= =
t = u' = u. Note that ¢ = u is then the proper time
of a particle “at rest” on § and that the particle’s
4-velocity is then V' = 92"/9u. Hence
VoY = —1

In the frame (5) we again use u = u' and write
S similarly as 2" = p = p(u), 2% = 2z = ¥,
M = ¢ = 4® and z* = r = r(u), where p(w)
and 7(u) are functions yet to be determined. We still
take u to be the proper time of a particle on 8, so
that again we have

V“”V;” = 22w

X [(dp/dw)* — (dr/dw)’] = —1,

where v(u) = y[p(w), 7(u)], etc.

We use the above parametrizations in the Ap-
pendix to show that v{}’ = v’ implies that, with
a = krjand ¢, = ro(1 — a)},

(=4 __
y -

(10)

v ()

plu) = coe (A1)
and
'™ = (1- a)ieh(u). (A2)
Equating the two second fundamental forms gives
the information

dr/du = :I:e*”(l — 2a), (A9)
V) = @u— e & 4 e

x 2 (g—f‘)’] = 0@), (ALl

Y@) = £37 7 dg/de) = o),  (A12)
where Eq. (10) yields the relation
VI = (1 — 2a) — coe®(dg/dw)’.  (11)

The signs in Eqgs. (A9) and (A12) may always be
chosen so that dr/du > 0, with positive signs for
a < % and negative ones for 3 < & < 1.

In the Appendix we also need the equation
S dd® + T [de™*/dulldz " /du] = 0,
which is satisfied if p(u), 7(u) is a geodesic. This
must be so since 8 is generated by the streamlines
of an incoherent fluid. Further, one can substitute
the expressions given by the above equations to
show that this geodesic equation implies the zero-
pressure condition Eq. (4).

Thus we are assured that the necessary and suf-
ficient conditions v{}’> = v{;’ and Qf’ = Q{7 may
be fulfilled by the use of the above parametrizations.

W. J. COCKE

IV. DETERMINATION OF THE VACUUM METRIC

Having proved that the junction conditions may
be satisfied by the exterior metric form (5), we need
only show how the full dependence of ¢ and 7 is
determined. Note that actually we have only shown
that the form (5) holds on 8 itself and not in the
exterior away from S. However, if we can show that
¢ and vy are not overdetermined in the exterior, we
are assured that the conditions of the theorem on
compatibility given in Sec. III are fulfilled. Thus
no additional terms vanishing on S would be neces-
sary in Eq. (5).

Further, from Ref. 7 we also know that this ex-
terior solution is physically unique; i.e., determined
up to a transformation of coordinates. However, we
also state how one may prove that the functions
¢ and v are completely determined via Egs. (A2),
(A11), and (A12) in some neighborbood of S. This
is in agreement with the fact that the only trans-
formation that conserves the form of (5) and leaves
p = 0is a trivial change of scale.

We begin by discussing the eylindrical wave equa-
tion

v+ A/ — ¥ =0, @

the general real solution for which is

¥(p, D = 2 {[a(N) sin A7 + b() cos Ar]Jo(Ap)
4 [e¢(N) sin A7 4+ d(X) cos AMr]N (o)}
+ ¢, log p + c.7 + c;.

Jo(z) and N,(x) are, respectively, the ordinary Bessel
function and the Neumann funection, both of order
zero, and the a(A), b(A), ¢(A), and d(7) are arbitrary
real functions of A. The ¢, are constants, and the
symbol >, indicates summation over any discrete
series of positive values of A # 0 plus integration
over any positive intervals of \. We assume that all
integrals and infinite series are ‘“termwise” differenti-
able as many times as we like with respect to both
p and r for whatever intervals of p and r are under
consideration. We examine this assumption more
carefully later on.

Let us now consider the relations (A2), (A11), and
(A12), which we write using Eq. (12) as

Yw) = 3g(w) + log (co/r0)
= > {[a(®) sin \r() + Q) cos Ar(@)]1J [N p(1)]

A
+ [e(\) sin Mr@) + d(¥) cos Ar(W)INo[A o)1}
+ ¢, log p(w) + c;r(w) + ¢, (13)

(12)
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V'), rw] = 6, (14)
Ylow), r@)] = w(w), (15)

where we do not bother to write out the full expres-
sions for the first derivatives of Eq. (12).

We see that we have three equations to satisfy.
Actually, however, there is an identity which con-
nects them; namely, Eq. (A10). Thus we may work
with any pair of the above equations.

What about the assumption of infinite differenti-
ability of (12)? Examination of explicit expressions
for g(u), 8(u), and w(u) would show that they are
all analytic except for those values of u where g(u)
goes to infinity, which values correspond to the
singular states of the Friedman universe. Thus if
we wish a solution valid only in a certain closed
interval of r such that for the corresponding closed
interval I of w the functions g, 6, and w are analytic,
then we may evidently restrict ourselves to an
ordinary “Fourier series” for ) . In this case both
Bessel functions will also be analytic in some open
interval of p containing the corresponding closed
interval {p(u): u € I}, and since J,(r) and Ny(z)
for large positive z behave as sines and cosines
divided by &}, their presence in the series should not
interfere with reworking the usual proofs of the
infinite termwise differentiability of Fourier series
representing analytic functions.'” It does not seem
profitable to pursue this topic any further here.

Let us also note that any pair of the Eqgs. (13),
(14), (15) certainly have linearly independent “‘ker-
nels,” so that essentially we have two independent
“Fourier series” to solve for two independent func-
tions. Thus the problem is not overdetermined.

We now state how to prove that, given the as-
sumption of infinite termwise differentiability for
the chosen interval [ of v, the solution is also unique
in the following sense: Given two different sets of
constants 4(\), b(\), é(\), d(\), é and a(\), 5(),
¢(\), d(N), é,, each of which separately solves Egs.
(13)—(15) on 8 for the same y(u), 8(u), w(u), then
the corresponding vacuum solutions ¥(p, 7) and
¥(p, 7) thus obtained are identical in some neighbor-
hood of 8.

We proceed as follows: By virtue of the linearity
of Egs. (12)-(15) in the unknown parameters, we
may form a new solution ¢ of Eq. (7) by writing

(o, 7) = ‘p(P; ) — ';(P; 7).

Obviously, ¢(u) = $(u) — F(u) = ¢'(u) = $(u) = 0.
Using Eq. (10) and the fact that ¢(p, 7) is a solu-

2 G. P. Tolstow, Fourierrethen (Deutscher Verlag der
Wissenschaften, Berlin, 1955), p. 119.
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tion of Eq. (7) in some neighborhood of S, one may
prove that ¢’ (u) = ¢'(u) = ¢(u) = 0on S. One may
easily extend the process to show that the partial
derivatives up to any given order vanish on 8. Thus,
since ¢(p, 7) is by construction analytic in some
neighborhood of S, it vanishes indentically in this
neighborhood. Hence §(p, ) = ¥(p, 7), and the
solutions of Eqs. (13)—(15) are unique.

Having determined y¢(p, 7), we now inquire as to
how to find y(p, 7). Since Eq. (7) has been satisfied,
the field equations (6) are integrable, and v(p, 1)
is thus determined up to an arbitrary constant. How-
ever, we may also use Eq. (10) to find v(u), which
raises the suspicion that y(p, ) may be over deter-
mined. But if one uses Eqgs. (6) to find v'(u) and
v(u), the equality dy(u)/du ¥'(u) do/du +
v(u) dr/du is easily seen to be satisfied by virtue of
Eq. (4). Thus v(p, 7) is also exactly determined.

V. RADIATION IN THE EXTERIOR METRIC

We now examine the interesting question of
whether or not our cylinders emit (or absorb) gravi-
tational radiation. Is there in some sense a flux of
gravitational energy in the exterior space whose
metric is given by the solution of Egs. (13), (14), and
(15)?

Such questions are ordinarily very difficult to
deal with, since the total energy of a gravitating
system is satisfactorily defined only when the system
is bounded and when the metric is asymptotically
Minkowskian. Note that in the present infinite
cylinder problem these conditions are obviously not
fulfilled. However, for the special case of cylindrical
systems a very useful type of energy has been de-
vised by Thorne.'® This is the so-called “C energy,”
and the reader is referred to the original paper for
the general treatment.

For our purposes it is enough to note that in the
exterior vacuum field given by the metric (5), the
total “C energy” per unit length in the z direction
contained inside the surface p = const on the hy-
persurface 7 = const is given by

E(p, 7') = %’Y(Pr T)' (16)

This energy per unit length contains not only a
gravitational energy inside p const but also the
mass energy of the incoherent fluid in the cylinder.
Thus if we can determine the sign of E(p, 7) =
dE/dr in the exterior we will know whether the “C
energy”’ inside p = const is increasing or decreasing.

But would this tell us whether the cylinder under

13 K. 8. Thorne, Phys. Rev. 138, B251 (1965).
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scrutiny is ‘“really” radiating or absorbing? After
all, for nonstatic systems there is nothing special
about the Einstein-Rosen frame, except for the fact
that it admits simple expressions for the field equa-
tions.

Thus it appears that the question of the absolute
sign of the energy flux in the exterior cannot be
invariantly stated.'* This is shown by noting that the
sign of the radial component of the “C energy” flux
vector P* given by Thorne’s Eq. (17) can be changed
by a transformation of coordinates satisfying the
following criteria: (1) The cylindrical “standard co-
ordinate system” form —ds’ = &7 (dr® —di®) +
€'Yd® + o’e**d¢’, where o = af(r, 1), is preserved;
(2) or'/or > 0, 3¢'/at > 0; and (3) the Jacobian of
the transformation is positive.

However, it is still instructive to examine the sign
of E(p, v) in the exterior. We have from Eq. (6)
4E(p, 1) = v(p, 7) = 2p¢'Y, which we may evaluate
very near the surface of the cylinder by means Egs.
(Al1l), (A12), and (11). This will tell us the rate of
change of the total “C energy’’ inside p = const at a
time when this particular p is located just outside
o(u).

Let us always choose the signs to conform to
dr/du > 0. Then

20(w) ¢’ (u) Y (u)
—e ¥(dg/du) |20 — 1|
X e + 3cie® "7 (dg/dw)’].

Since ¢, is positive we see that if « is nonnegative,
then v(u) has the opposite sign from dp/du =
coe’dg/du. Thus for collapse, when dp/du < 0, it
follows that E(u) > 0for @ > 0; and we can say that
the gravitational ‘‘C energy” fluxis directed inward for
observers at constant p situated just outside the
cylinder,

For @ < 0 the answer is not immediately apparent.
However, one can substitute the actual solution of
Eq. (4) for g(u) in parametrized form, which for
a < 0 may be written as (see Ref. 8) ¢(v) =
2In (cosh v — 1), u(w) = (—k) }(sinh v — v). De-
tailed examination with the help of Eq. (11) would
show that the quantity in square brackets in Eq.
(17) is again always positive as long as ¢¥™*" > 0.

Thus from the standpoint of the Einstein-Rosen

¥
an

I

4 One might also ask whether or not the total integrated
proper fluid energy per unit length changes. However, for an
incoherent fluid, the total proper energy contained in any
spacelike 3-volume across the surface of which there is no
fluid flow is a constant of the motion. Thus the total integrated
fluid energy per unit column length would be a constant in any
case.
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coordinate system the collapsing cylinders are all
associated with an incoming flux of gravitational
“C energy”’. Of course we may reverse our point of
view and consider the cylinders to be “exploding”
from an initially singular state. If ¥ > 0, this is so
anyway during half of the finite “lifetime” of the
cylinder, since there is a nonsingular moment of time
symmetry for g(u) in this case. In an explosive phase,
then, the flux of “C energy” just outside the surface
S is always outward.

It would be interesting to compare these results
with those obtained from the use of the various
energy-momentum pseudotensors, but we do not
go into that here.

CONCLUSIONS AND OBSERVATIONS

Having theoretically solved the problem of finding
the vacuum metric exterior to the collapsing cylinder,
one should next try to solve the equations for the
expansion coefficients. However, this is seen to be an
extremely complicated problem, even for the simple
case k = 0, and the author has made no progress
toward resolving it. Evidently, a great many ques-
tions remain to be answered regarding the vacuum
metric, particularly about its behavior “in the large.”

Let us also remark that a complete study of its
properties might shed some light on the collapse
of an elongated *cigar-shaped” object, albeit of a
very special sort. One might approximate the fields
close to the central portions of such an object by
using the mefric studied here. For example, it might
be possible to get an estimate of the amount of
gravitational energy absorbed during a collapse.
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APPENDIX

We now proceed to show how the invariant con-
tinuity conditions stated above in Sec. III may be
satisfied. Let us first investigate the form 7v,,. From
Eq. (8) together with the parametrization A7 (u®)
given in Sec. III, one easily obtains, with @ = krj,

7 (%)

- - u (-
v ==L v =0 —a), v =i

¥ =0 for p .

Evaluating v,, now from the outside via Eq. (5)
and using Eq. (10) one finds
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+) (+) _ 2¥(w) (+)
=1, v =€'", v

’Y;(:)=0 for p #vw.

The condition v{}’ = v{; then yields the relations
[we abbreviate ¢, = (1 — a)?]

p(u)Ze——z\l« (u) ,

o(u)

pW) = coe””, (A1)
e’ ™ = ¢ /r,. (A2)

We now calculate the second fundamental form
Q2,,. From Eq. (9) we have

Q, = — ax ax = (T — ns oz’ oz’ .
T out ow u’ ow
In the frame (1), again using n; = (g:1)8} and
the preceding parametrization b7 (u%),
-~ ax dz’
e, = I:l-‘}‘i(!hl)i (gu)i 5 s :|
— ip 1 ax ax
(@I " out au
Straightforward calculation yields
Q7 =0, 03 = kee*™, A3)
Q) = —ce®™, Q7 =0, for uFv.

For the exterior metric (5), the situation is more
complicated, as we do not know the form of the
function flz*’7], such that S is the locus of all points
satisfying flz‘*’*] = 0, except for the fact that it
does not depend on z and ¢. However, there are two
identities which n{*’ must satisfy. These are

— P =1 (A9
and, since flz*’ (4%)] = 0 is an identity in u*,

0z /ou” = 0 = niPax ™ /ou”,

(+) (+)§

n! = 62““)_27(“){[’”1(”]
i

which is identically satisfied for all & except a = 1,
which gives

n P (dp/du) + nit(dr/du) = 0. (A5)

We may use Eq. (10) to solve Eqs. (A4) and (A5)
assuming dp/du # 0, finding

:tez-y(u)—z\b(u)(dr/du),
:Fe2'y(u)—2¢(u)(dp/du)’

where we leave the signs arbitrary.

In order to evaluate 2{;’, we must consider the
derivative n‘f:, whereas Eqs. (A6) present ni*’ as
functions of %* and not of z‘*’’. However, we may
differentiate twice the identity ;f[x“”(u")] =

obtaining

+) __
meo= (A6)
ni+) —
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(+)[ax(ﬂ-/aun][ax(ﬂ:/au ]
—n{t % /ou” dut.
Equation (9) then becomes
* ou’ v’ Yoaut ow
Or, explicitly, with the use of Eqs. (A6)

2, (+)k (4)i g, (+)i
o = pf® dz Ig_dx ‘dx :l
T du’ odu  du |’

% = ”‘"’[xv( )du + 4@ ]
ol = ie‘”“"’{p(u)z[w(u) &

i 2] - w22,
QP =0, for u#v.

The condition 2> = Qf}’ then yields, from Egs.
(A3), the three rela,tlons

A2tk dzH* dx(+)i]
+) k. — | =
nk [ duZ + ru du du 0,

2¢(u)[¢( )du + 1,&(11,) :l = :choe}a(u),

(A7)

p(u)[xb(u) + Y ]}

— :{:coe}n(u)

Using Egs. (A1) and (A2), we may solve the last
two of the above equations to get

- dr
2¢ (w) -
€ {p(u) 7

Ve g ) % = e, (A9
g; 2P0 — 24). (A9)

We may also differentiate Eq. (A2) to obtain
dy(u)/du = ' (u)(dp/du)
+ YW (dr/dv) = dg/2 du. (A10)

Finally, with the help of Egs. (A1), (A2), and (A9),
one may solve Eqs. (A8) and (A10) to obtain

’ 1 -0 2(y=y+0) Co d_g”
V) = @u— | & 4 oo o (W)

(A1D)
Yu) = =3l Zz (A12)
Note from Eq. (A9) that for « = { we have
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dr/du = 0; and therefore from Eq. (10) ¢*¥ “~*7™ <
0, which means that in this case p becomes a timelike
coordinate, and the formalism fails.

What about ¥ < a < 1? If we desire dr/du > 0,
we siroply choose the lower signs in Eqgs. (A6), (A8),
and (A9). In principle this causes no difficulty. How-
ever, we then note that by Eq. (A6) we have
n{*’ < 0, no matter what sign is chosen for dr/du.

This fact raises the question of how to decide
whether or not a displacement 5z’ originating on S
projects into the vacuum or into the fluid. If 8z’ is
expressed in terms of the interior coordinates (1), we
already know the answer: 8277 = &rél + até}
projects into the vacuum from S if and only if
ér > 0, and into the fluid if and only if & < 0.
Since n{” = (gi,)}8}, we may put the matter in-
variantly by saying that éz‘”' projects into the
vacuum (fluid) if and only if n{™6z‘7" > 0(<0).
We must also interpret n{*’ in the same manner;
otherwise we would have to posit Q5 = —0f’.
Thus we likewise conclude that a displacement
oz = §psi + 676 projects into the vacuum
(fluid) if and only if n{* 6z’ > 0(<0). Now con-
sider the special displacement &y’ = &pél. We
haven{* 6y’ = n{*'8p, and thus if n{* < 0, sy**
will project into the vacuum if and only if §p < 0.
Hence it appears that the exterior part of our universe
might also turn out to be a cylinder of finite spacelike
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radius, covered by 0 < p < p(u). The final answer
to this problem, however, would depend on the
behavior of g;; = p’e ***" as p — 0 away from
p(u). As stated in the Introduction, the complete
form of ¥(p, ) and vy(p, 7) has not yet been dis-
covered.

We now turn to consider the condition (A7),
which will be satisfied if p(u), 7(u) represent a
geodesic; and since we are dealing with a surface
S generated by steamlines of an incoherent fluid,
this must be the case. In the frame (1), the tra-
jectory r(u) = ro, t{u) = u is certainly a geodesic.

Further, if one were to use Egs. (10), (A1), (A2),
(A9), (A11), (A12), and (6) to evaluate the Christof-
fel symbols I'%; and the derivatives of p(u) and r(u)
in terms of g and dg/du, a tedious but elementary
calculation would show that

dzx(+)"'/du2 + F:;[dxﬁ)i/du][dx(ﬂi/du] =0

is identically satisfied for m = 4, and that m = 1
gives back the differential Eq. (4) with ¢ replaced
by .

In this section we have thus proved that the neces-
sary and sufficient conditions v{}’ = 7, Qi) =
2%, may be fulfilled by the use of the interior metric
(1), for which S is expressed via f[z‘ 7] = r — r, = 0,
and the exterior metric (5) with S represented via
the above expressions for p(u) and r(u).
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In this paper we attempt a general relativistic extension of some simple notions, e.g., total angular
momentum, so far correctly defined only in the frame of special relativity. The mathematical aspect
of the problem leads us to ask, given a tensor of vanishing divergence, how to construct an integral
object, conserved in time and covariant.

A formalism based upon bitensors ensures the covariance, while the assumption of an exploding
(or imploding) schema of matter seems to be the only available means to preserve conservation when
the space-time is curved. This can be formulated in a general theorem then applied to different
physical situations. The total linear momentum occurs as a vector fixed at the point of explosion (or
implosion). Its length turns out (at least when a pure matter schema is concerned) to be superior to the
total mass of the fluid. The excess appears as the energy carried by the explosion. The case of a so called
‘“‘uncompressible’’ holonomic fluid gives a quite analogous result. In order to find & nontrivial angular
momentum we also consider, in the last section, the case of a fluid possessing an intrinsic spin density.
Both linear and angular momenta are conserved and covariantly defined. Moreover, they reduce to
the conventional ones when the curvature vanishes.

INTRODUCTION

HE attempt of this paper is to point out how

bilocal techniques, and especially geodesic par-
allel transport, permit one in certain cases to define
integral conserved convariant quantities in the
presence of an arbitrary Riemannian curvature. As
an example of the difficulty of finding such quanti-
ties, consider the definition of the total linear momen-
tum of a continuous distribution of matter. Insofar as
we stay in a Minkowski space no problem occurs,
consider the definition of the total linear momentum
of a continuous distribution of matter. Insofar as
we stay in a Minkowski space no problem occurs
since: (a) The integral of a linear momentum dis-
tribution yields a covariant vector. (b) The vanishing
of the divergence of the matter tensor ensures that
the result of integration is a conserved quantity.
(No external forces are involved.) As soon as curva-
ture is taken into account, the definition of total
linear momentum faces a two-step problem: 1. How
can one add elementary vectors fixed at different
points so as to obtain a simple covariant object
under general coordinate transformation? 2, Even
if the first step is passed, will the result be a con-
served quantity?

The first problem can be easily solved by per-
forming geodesic parallel transport to an arbitrary
given point before adding the elementary vectors.
According to the properties of parallelism, the result
of this calculation will reduce to the usual Lorentz

* On leave from Institut Poincaré, Paris, France.

covariant vector in case of flat space. The second
problem appears to have no solution in the general
case. Nevertheless, we shall see that we can ensure
conservation for a certain special type of matter
distribution, viz. the exploding (or imploding)
schema. The conserved integral vector will be a
local vector fixed at the explosion point. For the
sake of generality the mathematical formalism which
yields these results is given in a form applicable
not only to vectors, but also to tensors of any rank.
This generalized formalism is also applied to the
case of apgular momentum. The orbital momentum
turns out to vanish with respect to the imploding
point when the usual pure matter schema is assumed.
Therefore, in order to apply the general formalism
to a nontrivial object, a fluid possessing an intrinsic
spin density is examined. The Weyssenhoff-Raabe
description of such a fluid is translated into Rie-
mannian language, always maintaining the explosion
assumption. In this way, a satisfactory definition
of integral conserved momentum can be found.
However, the Riemannian background ig in this
case given a priori; the fluid ¢s not the source of
curvature (Sec. IV). The physical meaning is that
the fluid must be interpretated as a “test droplet”
in the gravitational fluid produced by a certain
external source. The droplet differs from the usual
test body by two features: explosion and intrinsie
spin.

Notation: In this paper ¥V denotes the covariant
differentiation and the speed of light is equal to
unity.
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1. MATHEMATICAL FORMALISM

Let us consider a differentiable manifold V,, where
an affinity and a volume element density 5,4, dz* A
dz® A dx” A dzx® are supposedly defined.

The labels a, 8, v --- or A, B, C -+ refer to z
while &', 8/, v' --- or A’, B’, ¢’ - - - refer to another
point, say z’. As usual @, 8, v, --- run from 1 to 4
and 4, B, C --- are short for a certain set of Greek
labels.

We shall use bitensors which are tensors at both
z and z’.

It is well known that an integrand of the type
w' = T dz, (I1.1)

(where 7”* is a tensor and dZ, the 3-dimensional
element

dzv = Nrapgy dxa A d-’L'B A dx7) (1.2)

cannot be integrated over any three-dimensional
surface in a covariant manner because of the presence
of the label A. The geometrical reason for this is
the impossibility of adding tensors taken at different
points of a curved space. However, if 7”* is merely
a stress-energy tensor defined in a Riemannian
manifold, B. 8. DeWitt and R. Brehme have pointed
out, that it is natural to consider, instead of 77
the transported quantities

frvu’ . e u
(z,z') — T g Py

(1.3)

where g*', is the bitensor of geodesic parallel dis-
placement.! Since 7"* is a vector at the point z,
it provides us with the covariant integral
. = f ™ gz, (1.4)

z
which, if convergent, is a vector at the point z’.

But when the space is curved, the vanishing diver-
gence equation

v, T =0 1.5)

generally does not imply that V,7"*" also vanishes.

Returning now to the general case of any tensor
T’# given in a variety V, where a volume element
is defined, it will be possible to build covariant
integrals as follows:

Let 8 = (6°';) be any bitensor which reduces
to 8% when 2/ tends to z, and 67' = (6°,.) the
reciprocal of 6, i.e.,,

oa’ﬁaﬂc’ = aan (16)
1 B. 8. DeWitt and R. W. Brehme, Ann. of Phys. (N. Y.)
9, 220 (1960).
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0, 0", = &, (L.7)
If A involves p contravariant labels «;, - a,
and g covariant labels 8, - - - 8,, let us take
67 = (6%, 6", - -0 6°77) (1.8)
and
670 = (670, 07ps - 6. (L9)
So, by the tensorial product, we get
8 ® 677 = (6*'5) (L.10)
Bor o it = 02 e 02 g --- 055, (111)

which reduces to 8z when z’ tends to z. Instead
of T"* and w* we shall use

e, = T"%0 5 (1.12)
and
&% = w0y, 1.13)

which, being a scalar at the point z, yields the
covariant integral

A’ - aA
(z',2) = W (z,27)
b

Let us now assume that an affinity T is defined
on V, and require that # is the bitensor of parallel
displacement along a set of given (not necessarily
geodesic) curves joining each point x to the fixed z’'.

Even remaining strongly undetermined, the choice
of @ is restricted in a convenient manner, since
in the case of a flat space, 6“5 reduces to the
Kronecker §*; within a special frame both at the
points z and z’.

So I*" appears as a natural generalization of the
Lorentz covariant integrals we can build in Minkow-
skian space, and the indetermination in 6 cancels
out with a vanishing curvature. In all that follows
let us suppose that V, is merely a Riemannian
variety. Even if the null divergence condition

v, "4 =0 (I.15)

is satisfied, with the most general Riemannian
curvature, V,7"*" is nonvanishing and do*" = 0.
In fact we have

V., = (V, 120" 3 + T"°V,60% 5. (I.16)

A sufficient condition to have a null divergence
v, 7"+ if V,T** vanishes,

TVBV,BA’() = 0.

(1.14)

(1.17)

In Eq. 1.17) V,6" ¢ involves linearly the covariant
derivatives of 8* ; and 6°,.. But, 8" being the inverse
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of 8, we have

V.o = —6,.0,.V,6%,. (1.18)

So, V,0* ¢ is linear and homogeneous in the co-
variant derivatives V,0% 5. Hence, a sufficient con-
dition to have (I1.17) is

T°v,0% s = 0. 1.19)

Our purpose is to exhibit some particular choices
of T°* which allow us to find 6 such that (I.19)
holds without any condition on the curvature.

An interesting type of T+4

We consider now the case where 7°* can be
written as

T4 = ', (1.20)

where the trajectories of »* (congruence of curves
everywhere tangent to v”) are outgoing from (or
incoming to) a common point. Let us take this
common point as z’, and 8 as the bitensor of parallel
displacement along the trajectories of »”. This means
that, applying 6 to any vector V° at the point z,
we get, at the point z/, the vector V° generated
from V° by parallel displacement along the tra-
jectory joining x to 2’ (insofar as the path is unique).

In other words, 6 can be defined by integrating
the differential system

v'V,0", = 0 (I.21)
on each path, with the initial condition
' zzrmny = 0% (1.22)

(cf. DeWitt, Brehme,' Lichnerowicz,” if geodesics).
Eqgs. (I.21) and (1.22) have been introduced by
B. 8. DeWitt' and used by Lichnerowicz® with
geodesics but are now extended to any kind of path.
From (I1.20) and (I.21) we obtain immediately

T°4V,0% s = 0, (I.23)
i.e., condition (I1.19).

Theorem: 1If V,T°* = 0, V,T"* also vanishes,
the Gauss formula can be applied to (I.14) with any
convenient hypersurface.

II. TOTAL LINEAR MOMENTUMS FOR
OUTPOURING PURE MATTER

Let V, be the space-time of general relativity.
The matter is described, as usual, by the stress-
energy tensor

T = puu’, (I1.1)

2 A. Lichnerowicz, Propagaleurs et commutateurs en

Relativité Generale (Institut des Hautes Etudes Scientifiques,
Paris, 1961), p. 9.
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but we assume that the current lines (spacelike
geodesics trajectories of u*) are all outgoing from
a singular point z’. (Such a pattern can be found,
for instance, with an expanding universe reducing
to a point at the initial time.) T is of the type
(1.20), and the trajectories of u* being geodesics, the
corresponding choice of 6%, is merely

0%'s = g%'s, (I1.2)

the geodesic parallel displacement tensor.
Since the divergence of T** is zero, the divergence
of

T = 79", (11.3)

also vanishes. The matter distribution is necessarily
contained in the future of z’. We can assume that it
is bounded by a 3-conoid K generated by timelike
geodesics issuing from &’. The inside points of K
situated between two spacelike hypersurfaces Z,
and Z, intersecting K define a four-dimensional
domain ©Q to which the Gauss formula can be applied.
Since

u® dZ, =0 (I1.4)

over K, the timelike part of 92 is irrelevant in

fw = [ 74z, L)
3 aq
hence
fT d2a=f T d5.  (IL6)
Za Z,
and
v o= | T 4=, II.
wr = [17az. L)

has the same value for all spacelike T intersecting
the future of z’. The parallel displacement, being
performed continuously along orientable timelike
trajectories, maps any timelike vector future
oriented at the point z onto a timelike vector
future oriented at the point 2’. Choosing u* every-
where future oriented we get

T dz, = &" (IL.8)

as a timelike vector future oriented at the point z,

= ou'g” W’ d2,

and defined for each z (zero valued when z'z is
spacelike). The future timelike property is con-
served by addition. Hence the integral (I1.7) is a
future timelike vector the length of which defines
a positive proper mass P generally different from
the inertial mass

M = (I1.9

f pu® dZ,.
z
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It is noteworthy that the length of P”' cannot be
inferior to M. In effect we must remember that, if
timelike paths are compared in Minkowski space,
the straight line joining two points is always longer
than any other timelike line. This provides a pseudo-
Euclidian triangular inequality: When two timelike
vectors of the same orientation (i.e., either both
future-oriented or both past-oriented) are added, we
have

lA + BJ| = [iAl| + IIB]]. (11.10)

Naturally, this property holds when the vectors
are fixed at the point z’ of space-time, since they
lie in the same tangent Minkowski space. Of course,
(I1.10) remains valid for any number of timelike
vectors, provided they have the same orientation,
and hence convergent series or integrals can be
considered.

Application of (I1.10) to (I1.7) yields

[al| = [ 1,

if & denotes the vector having the components &
But since g”'su’ is a unit vector

I[P = (I1.11)

l8]] = |ou® dZ.], (I1.12)
and hence [ ||6]| is simply M. This yields
P>M. (I1.13)

Generally, P — M is rigorously positive and rep-
resents the energy involved in the explosion. The
excess of P over M is, of course, a feature of the
explosion rather than a curvature effect, since P — M
differs from zero even in flat space.

III. TOTAL CURRENT RESULTANT FOR AN
INCOMPRESSIBLE HOLONOMIC FLUID.

Let us first recall that a holonomic fluid is de-
scribed by a stress-energy tensor

(IIL.1)

where 7 is a positive scalar, u, is a unit vector,
and #,p is assumed such that we can write

(A/r)V 1% = 93 log F; (I11.2)

F is called the index of the fluid. From these assump-
tions it follows® ® that the current lines, trajectories
of 4%, are geodesics of the conformal metric
Jur da* dz” = d5° = F* ds°
8 FKisenhart, Trans. Am. Math. Soc. 26, 205 (1924).
¢J. L. Synge Proc. London Math. Soc, 43, 376 (1937).
5 A. Lichnerowicz, Theories Relativistes de la Gravitation e

de UElectromagnetisme (Masson, Paris, 1955), Chap. 1V, pp.
71~75; Chap. V. ’ ’

Tag = ruUg — tap,

(I11.3)

PHILIPPE DROZ-VINCENT

It is convenient® to introduce the current vectors C
and C colinear to u.

C* = Fu®, (111.4)
Co = C, = Fu,, (I11.5)
C* = §*°Cy = (1/F)u". (ITL6)
Note that
C¢C. = 1. (111.7)
The trajectories of C being geodesics of ds,
C*V.C* =0, (1I1.8)

where V is the covariant differentiation operator
with respect to the Riemannian space defined by ds’.

We shall now assume that the fluid we deal with
is incompressible, i.e.,’®

v, =0 (I11.9)
This equation is equivalent to
3,l(lgh*c’1 = o. (I11.10)
So let us introduce J* by
(lgh*c= = (lah¥/". (II1.11)
We have
3,L(gh*el = (II1.12)
hence
v,J* =0. (111.13)

This formula is merely a means of putting (II1.9)
in terms of the affinity T' resulting from d&°. Let us
now consider the tensor J“C” which presents a cer-
tain formal analogy with a pure-matter tensor. If
we calculate its divergence by V differentiation, we
get

V(JC) = V. J*-C° + J*V.C.  (IIL14)

The first term in the right-hand side cancels out
from (II1.13). The second term is proportional to
0V .C?, since J° is proportional to C*. Thus, from
(I11.8) this term also vanishes and, for any incom-
pressible holonomic fluid, the tensor J *C* satisfies

V.(JCP) = 0. (II1.15)

The situation is, mathematically, quite the same
as within the pure-matter picutre. Respectlvely,
Y a) g,,,, J* and C® play the role of Vg, gu, pu*
and »®, If we now introduce the topological assump-
tion that all the current lines are outpouring from
a point 2/, we can perform the geodesic parallel
displacement of ¢ with respect to the affinity of
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~
ds® and along the different paths zz’. So we obtain,
for

jau' = jaéﬂg"'p (I11.16)

a vanishing VV divergence at each point z. As above,
the matter distribution is contained inside of a three-
dimensional conoid generated by timelike geodesics
going from z’ to the future. (Both ds® and d5® define
the same timelike directions, since d5* is conformal
to ds’.) We have

J*d2, =0 (I11.17)

over the conoid and the usual argument with Gauss
theorem leads to the invariance of
., = f J G, dS.  (1IL18)
=
with respect to the spacelike I intersecting the
future of z’. For the same reason as P’ in the

preceding section, I*' is a timelike vector at the
point .

Remark: In the relativistic sense, the incompress-
ibility of a fluid is not inconsistent with the existence
of a point such as z’, the only condition required
being that (I11.9) holds.

IV. ANGULAR MOMENTA

Momentum of a vector with respect to a point
The usual Lorentz covariant expression
m*® = v @@® — ') — P(x* — 2'*)

(Iv.1)

giving the moment of a vector v* with respect to
any point 2’ can be formally generalized in a Rieman-
nian space, since we have a natural generalization
of (z® — z'*). From the biscalar geodesic interval

T
8(z,2") =f ds,
"

calculated along the geodesic path joining z’ to =z,
it is convenient to put

(Iv.2)

Tisery = 38° (Iv.a3)
which provides the gradient
T, = 6,0'(,_2'), (IV-4:)

studied in detail by B. 8. DeWitt and R. Brehme.'
This manifestly covariant object is a scalar at the
point z’ and a vector at the point x. As a vector

N
it is tangent at z to the geodesic path z'z. When
the space is merely Minkowskian, we get, in a special
frame, after the labels have been raised,
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=z -z (IV.5)
So the looked-for generalization will be taken as
map = va (z,2') — 1)’0'?,_,'). (IV.G)

But if we apply this definition to the matter picture
stated in Sec. IT and 2’ being the point from which
the world lines emanate, we obtain a vanishing result
for the moment of the vector pu®. In effect u® is,
for each z, colinear to o(,.,, since it is tangent to
the geodesic world line.

An analogous trivial result is obtained for the
incompressible fluid of Sec. III if we deal with the
vector J* and the ¢° deduced from ds”. Nevertheless,
we can get from definition (IV.6) nontrivial results
if we consider a fluid pattern possessing intrinsic
spin. In view of describing such a fluid we can extend
the Weyssenhoff’s model® to the Riemannian uni-
verse as follows.

The fluid with intrinsic spin in a Riemannian universe

A momentum vector g, noncolinear to the veloc-
ity «*, is assumed. The energy-momentum tensor

T = u'g’ av.n
is supposed to satisfy the four equations
v. I =0, (IV.8)
that is to say
gV + uv,e =0, Iv.9)

which shows that the momentum vector g remains
parallel to itself along any current lines (the tra-
jectories of u’). With respect to any point w the
moment of energy-momentum tensor will be, ac-
cording to definition (IV.6),

’z:‘.’u) = T”a‘()z.w) - TMO'::.«»): (N.IO)
in other words
L' = u'g’cte.or — §'0te).  (IV.11)

From (IV.8) the divergence of this is merely
V. L' = g — ¢'W), (Iv.12)

where

(Iv.13)

reduces to 4° in the flat case. As in the flat space of
Weyssenhoff’s theory, the nonvanishing divergence
of L lends us to construct a total angular momentum

Jot = LM+ ws (Iv.14)

¢J. V. Wyssenhoff and Raabe, Acta Phys. Polon. 9, 8
(1947).

~ " )
u‘(’:.u) =u vua'(z,u)
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involving the skew-symmetric quantities S** sup-
posed to describe the intrinsic spin properties. But in
the curved case, the divergence of L, containing %,
18 « dependent. Hence, before assuming any-
thing about the divergence of J we need to fix a
particular choice of w. Only when w has been fixed
can we introduce S”°(z, ») as a skew-metric tensor
at the point z, and postulate

v =0, (IV.15)

which comprises 10 independent equations. Having
4 equations in (IV.8) we need three more equations
and shall take

S, ou, = 0. (1IV.16)

This formalism seems merely to be a translation of
the Weyssenhoff theory into the Riemannian lan-
guage, but here arises the necessity of specifying
a particular point of the space-time. This situation
becomes more meaningful if we now assume that
all the current lines have a common point z’ and
that « has been fixed identical to 2”.

From (IV.11) and (IV.14) it is easy to see that

.‘(‘;?z’) = u“(g'a‘(,z.z’) - gpa':z,z’) + ::z’) . (IV17)
Hence J%2., appears as a particular case of the 7”*
tensor studied in Sec. I [(1.20) et seq.]. Since the
divergence of J is null, the theorem given in Sec. I
yields

v S =, (IV.18)

where
JreB = Jrregat g (IV.19)

and %', is the parallel displacement bitensor along
the current lines (u-trajectories). On the other hand,
Eqgs. (IV.7) and (IV.8) exhibit T*" as another ex-
ample of the 7°“ tensor to which the theorem of Sec.
I can be applied. Then we have

v, " =0 (IV.20)

PHILIPPE DROZ-VINCENT

with

e’ = g’ (Iv.21)

Using hypersurfaces intersecting in the future of z/,
the conoid which bounds the matter, we get from
Gauss’s theorem

JeE = fz Je g, (IV 22)

and

Py = [ 1 az, (IV 23)
as = invariant integrals.

In (IV.23), T**'dZ, is proportional to ¢’8%',.
Since g” is timelike and future oriented, this property
also belongs to ¢’6%’, and P*'. As in Sec. II, P*'
represents the total momentum of the fluid, but,
here we have a nonzero total angular momentum
Je,

CONCLUDING REMARKS

The basic assumption of the existance of a singular
point such as z’ may seem very restrictive. So it is
natural to investigate whether one could take z’
at infinity in the past. Unfortunately, the above
results, so far, seem certain to fail with this mod-
ification. Hence, at this stage, the requirement of
having integral conservation laws in curved space
leads to the consideration of an instant, where all
the matter of rhe universe is concentrated at a
single point. For simplicity this point has been here
chosen in the past (exploding schema) but the above
calculations also hold with matter collapsing to a
point in the future.
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A method of invariant Green’s functions which is frequently used to find the fields of a moving
charge is applied to evaluate the fields of dipoles and multipoles. Concise expressions are obtained from
the integrals by successively integrating by parts. Two well-known methods for finding the radiation
field on the world line of a charge are repeated for a dipole. It is found that a nonrotating (Fermi-~
Walker propagated) electric dipole has vanishing radiation field on the world line when it moves
hyperbolically, as in the corresponding case for a charge. Radiation on the world lines of multipole.‘_; is
also discussed (with particular reference to quadrupoles and octupoles), and the problem of evaluating
the radiation reaction for a dipole is described within the context of the methods here given. It is
further shown that a classical description of mass renormalization is possible to within the approxima-~

tion of first-order terms, but not beyond.

INTRODUCTION

E devote our attention to a familiar part of

classical electromagnetic theory dealing with
moving point charges, dipoles, and multipoles, and
in particular to a standard treatment for moving
charges involving the use of invariant Green’s func-
tions. The latter method is frequently given in text-
books as a means of evaluating the potentials, fields,
radiation, radiation reaction, and mass renormaliza-
tion, for moving charges. The purpose of this article
is to show that the same techniques can be used for
the calculation of similar quantities for dipoles and
multipoles.

Invariant Green’s functions have an advantage
over other methods in that they avoid altogether the
ugly dependence of the retarded (or advanced)
proper time on the field point in the differentiation of
the potentials to find the fields. Another advantage
which they clearly possess is demonstrated in the
rapidity with which the value of the radiation field
on the world line of a moving charge can be obtained
by their use. The method is to be compared with the
lengthier, explicit, and original method of Dirac
which he gave some thirty years ago. The radiation
on the world line has a close correspondence with
the value of the force of reaction (we should not
expect this to be entirely the case for a dipole) and
the associated principle of (classical) mass renormal-
ization is almost always described with the aid of
Green’s functions.

As far as the calculation of the potentials, fields,
and radiation is concerned, the method possesses
interesting possibilities of generalization to dipoles
and multipoles which may not be widely known.

* Present address: University of Sussex, Falmer, Brighton,
England.

They are the sort of quantities which should have
been calculated; and, so far as the author is aware,
only the potential of a dipole has been calculated by
the method of Green’s functions. The (concise) ex-
pression for the fields of a dipole which the Green’s
function method gives rise to is related to a similar
form given by one other method (which, none the
less, has a wide range of applications), while the
“world line radiation field” (for want of a better
word) does not seem to have appeared at all in the
literature either by the original method of Dirac or
by the method of Green’s functions.

Although the connection between this radiation
field and the force of reaction would not be so
straightforward for a dipole (or multipole) as it is
for a charge, it would seem a desirable quantity to
calculate (especially for an electric dipole) either as
a counterpart to the corresponding expression for a
charge, or from the point of view of establishing
whether it vanishes for hyperbolic motion as might
seem plausible in certain circumstances in view of
the fact that an electrie dipole can be constructed
from rigidly connected charges.

Before we can calculate the force and the torque of
reaction for a moving dipole, we must possess ade-
quate knowledge of the equations of motion. Dif-
ferent forms of such equations have been given in
the literature but they seem to lack an interaction
of the type ¢ xH (for an electric dipole of moment
q) which one might expect would exist (by analogy
with eV xH) together with the usual expression
for the force (q+V)E in the rest system. Such equa-
tions of motion can be obtained by assuming a
first-order homogeneous Lagrangian in velocities
through the moment tensor, so that the generalized
momentum contains dipole moment terms in ad-
dition to the usual eA” when a charge is present.

1185



1186

It then appears that while the torque of reaction
depends directly on the radiation field along the
world line, the force of reaction depends upon this
as well as its derivative, and the proceedure for
finding the latter part can be given following the
method of caleulating the radiation field of a quad-
rupole,

Mass renormalization for the infinite part of the
self-force of a dipole can be carried out without
necessarily specifying the spin terms in the La-
grangian, but this is no longer possible for the torque
of reaction and so we have only been able to discuss
the situation as it appears for the force.

The first section deals very briefly with the Green’s
function (methods) for & moving charge; though the
subject matter is very familiar, it is a convenient
starting point. We describe the similar situations for
dipoles and multipoles (including multipole expan-
sions) in the later sections, leaving the problem of
radiation reaction for a dipole to the end.

THE MOVING CHARGE

We begin' with Maxwell’s equations for the elec-
tromagnetic field.> F*’(z) arising from the current
density vector §*(x):

ny ] ¥y —
., = 7 F*, =0,

where

"= A — AT

Imposing the Lorentz gauge, A* . = 0, the equations
are equivalent to

OA* =7 (O =4,9). (1)

If there is no incoming field, we have the solution®

I Gaussian units are used and the metric of special rel-
ativity is taken in the form ds* = g,, dz* dz” with g,, = diag
(1, —1, —1, —1) and 2° = ct. Greek suffixes take the values
0,1, 2, 3. A comma or 3 denotes differentiation with respect to
the event z «; differentiation with respect to 7 is denoted by a
dot. Duality is defined according to the definition

1F, = Lt o Ff (or iF*” = %g'*g‘”“ﬂFaﬁ)
where g = det (g,,) = — 1, and £,45, &7 are alternating
tensor densities having the numerical value of §51%%. The

following notations are used:
o' = (ct, %), A" = ($,4), "= (4wp, 4xi/c),
(FOI, F02’ F,OS) = E, (F23, Fal’ Flz) = H
2 Suffixes will be dropped m functional notation and also in
products, thus z? = x"é:&, (zy) = z*Y,.

8 See, for example, ET hm-mg, Principles of Quantum
Electrodynamics (Academic Press, Inc., New York, 1958), p. 19.
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4°@) = 42@) = [ Dot — )7 @) &

@)

with' D.u(a) = o= 06") 5(2")

For a point charge e moving along a given world
line L, 2* = 2°(7), we may substitute

F@) = tre [ 2O8@ —aDdr 3
and integrate over z’ to obtain

@

and, on further differentiating and integrating by
parts

A% (@) = 4re f_ " FDoks — «) dr;

writing 2* — 2*(7) = I, *(D@. — 2.(0)) =,
Fin) = Az — AL,
~  (@/A)DeD) o,
= tne [ 2 IR0 oy g,
— (u o)

- d (27 — 7
~ 4re f_ D) E{—T'} dr, ()

where we have used

@dDl = ~2, (P = 2r.

Evaluating (4) and (5) gives,® for z° > 2°,
ret(x> [GZ“/Z)],-,.,, (6)

- & =2
e - [(E ]

the potentials and the fields of an arbitrarily moving
charge.

The radiation field F¥2;, = F*, — F*, measured
along the world line £® = 2%(r) has the value

Fride(n) = 3l (d%’/de’) — 2(d%"/d)]  (7)

and was first obtained by Dirac.® This original
method by Dirac was to evaluate F%,(z) given in (6)

4 Do) is the four-dimensional retarded Green’s function;
the ¢ f)unctlon is defined by 6(z°) = 1, 2° > 0, and 8(z°) = 0
0 <
8 Using

25(l2) = 8(7' - Tr)/lvlf-rr + 5(7' - Tn)/lv]f-ny

where ., 7, are retarded and advanced proper times where the

world line L intersects the null cone drawn from the event z ¢

into the past and future, respectively.

a Sg) A. M. Dirac, Proc. Roy. Soc. (London) Al67, 148
9
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at the point 2* = 2z"(ro) + ~* just “off” the world
line, where the infinitesimal vector v* was orthogonal
to #*(r,) and ¥° = —¢°. The result’

Frou(e(ro) + )

= —el — 2] -, —3 1 — 5] 27,

+ 3N (@2 /d0)Y + fESY
+ ¥d /A7) — (o) ®)

contains no even powers of e¢. The value of —F%), is
obtained by changing ¢ to —e. Hence the value of
F%(2(7)) is finite along the world line and equal to
™.

The other, shorter, method of calculating the
radiation field along the world line of the moving
charge,® which we referred to, is by replacing the
retarded Green’s function D,,, by the antisymmetrie
one’ D = D,,, — D,,, in the integral (5) for the
fields, with * = 2*(s), and expanding of the inte-
grand.

THE MOVING DIPOLE

Dipole fields are often described by Hertz vectors,
and in fact we use the relation

A*=T", @ =-I" 9
in the wave equation (1) and solve the equations
= ~™),

= 4. The solution [cf. Eq. (2)]

Oon” = juv

where 7,
I (z) = Meeu(z) = f D..(x — 2" (@) d*z’ (10)

is applied to the case where j*"(z') arises solely from a
dipole singularity along the world line:

7@y =ar [ : P(D)5Q — sy dr.  (11)

We note that the conserved four-current then has
the form

) = 4r f : 2(1) 8,6 — 2() dr.  (12)

. ’lsCommas separate terms of increasing order of infinites-
ima,

8 See, for example, Ref. 3, p. 23 and A. O. Barut, Eleciro-
dynamics and Classical Theory of Fields and Partwles (The
Macmillan Co any, New York 1964), p. 188

D (z) = 21r) e(x“) &(x%), wi here e(z%) =1, 0> 0, and
a0) = — 1, :c
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The derivative of the delta function indicates the
dipole character of the singularity. By substituting
(11) in (10) and carrying out the integrations over
z’, we find

W@ = 4r [ 9" @Dule — s dr,  (13)
and so from (9)
'@ = [ 9 0.D.D dr
= 4r f D0 & ®,dr (4
O
= dr f D) 5 {?’——} dr.  (15)

Differentiating under the integral sign in (14) we
further have

1d

Folz) = —4x & j: 21 (; ar D,,.(l)) dr

— (o) (16)

= anld (1d
= dr f.,"”ﬂ’ ;z;(;z.z:Dm@) dr

1
. ) el
w [0 al

L D) dr = s
- [ DL Z{LL(

u nr
p———Ll L P }df

— (o).

The latter part of the integrand in (16) which is
enclosed within round brackets is a function of ,
hence differentiation of this part by 8” has been
effected in the same way as in (14). Using the expres-
sion for D,., in (2) we have for the potentials'® from
(15) assuming z° > 2°,

a7

14d

. it
Aret(x) = [;a{p—v——}] - ’

10 A, Bialas, Acta Phys. Polon. 20, 831 (1961).

(18)
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and for the fields" from (17)
Frez) = [;(E

By _af 4 uy
X {14~<—1L”——”“ L ) +g‘Z——}:l .19

vdr v

The expressions (18) and (19) have the obvious ad-
vantages of conciseness, and it is clear that it is with
these expressions that one should seek to evaluate the
radiation fields. However, the implicit differentia-
tions can be carried out to give the expressions (first
obtained by Bhabha and Corben'* following a direct
method of differentiation given by Bhabha'®***):

Ale(z) = [{p"k, — p*(ER)K,} /v

+ "k, — p"8,}/0")eer, (20)
Frz) = [21:{“1 + 232{“” + 2133{"”]7_” (21)
with'®
Py = {p". — 3Ck)p".

+ 3@Ek)*p". — (d%/dr)E)p s} K,

11 See G. N. Ward, Proc. Roy. Soc. (London) A279, 562
(1964) for a derivation of a similar form of expression (19)
here given, using analytical continuation. The method is an
application of a technique of integrating Maxwell’s equations
based on the use of an integral identity. The equivalence of the
two expressions can be seen by using the formula

Sp gl = p sl — FEP
together with the identity
—5;\‘:5 = Emﬂasarka-
12H, J. Bhabha and H. C. Corben, Proc. Roy. Soc.

(London) A178, 273 (1941).
1B H, J. Bhabha, Proc. Roy. Soc. (London) Al72, 384

1939).

( 1 S)ee also H. J. Bhabha, H. C. Corben, and Harish-
Chandra, Proc. Roy. Soc. (London) A185, 250 (1946). Other
works related to spinning charges with magnetic dipole
moment include those of M. Mathisson, Proc. Cambridge
Phil. Soe. 38, 40 (1942); and A. Bialas, Acta Phys. Polon. 22,

349, 499 (1962). . L
15 Square brackets denote complete antisymmetrization:

e.g.,
Apapyy = 1/3! {Apy + 4pya

+ Ayap — Apay — Aavs — Aypal;
round brackets, complete symmetrization: e.g.,
Acasy) = 1/3! {Aepy + 4pya

+ Ayas + Aﬁa-r + Aays + A'Iﬁa}'
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4 = ¥ 3Pt koh — 4pm Y — (k)™
—~ 6K K" + Bk K — 2p* ke,
RY = p* + 3p". kK — 6p".k'” + 2.5,

where k* = I"/v.
If we agree to write for the electric and magnetic
four-moments,

B My ®o__ u*y .
g =Pz, m =p 2,

we may use the identity

uy

PV = 340°F + £ Pm.z

to split p*” into electric and magnetic components.
The corresponding “‘rest-moments” in the instan-
taneous Lorentz rest system (—g°)}, (—m’)} are
related by

a @ I ')
9@ Ga — M My = 3P Py,

and the angle between the moment vectors is given
by

a . 1KV
m . = D Duss.

For a pure electric dipole we have'®

P = ¢ — g%, @)
and the expressions (20) and (21) reduce to those
previously given for an electric dipole constructed
from rigidly connected charges.'”

To gain information about the world line radi-
ation field for a dipole we first use the original
(explicit) method of Dirac® with our expression
(19). The calculation is very lengthy and for this
reason we will not reproduce it here. We here give
only the result for F%*, analogous to (8):

ret

18 3, N. Ward, Proc. Cambridge Phil. Soc. 61, 547 (1965).

17 J. R. Ellis, Proc. Cambridge Phil. Soc. 59, 759 (1963).
Equation (22) provides another means of calculating the
fields in vector form. We use

01 _o02 03 23 31 1
®", ™, ™) = —fn, ®*, p", ") = pnx V/c
since n = q — ¢ V/c is the relative vector moment of the
dipole. However, the calculations are still somewhat lengthy.
Recent observations by G. N. Ward show that the formulas
previously given for the fields E and H are valid also in the
case of time-varying rest-moment M(f); in this case the
relative vector moment occurring in these expressions is taken
as

n = M(Oa[1 — [V[*/P/[1 — lax VIP/I
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Fooge(ro) + 1) = [1 — 57718 oy — ¢ °[1 — 2y]7'p*a2"¢

(asr)

+ %", +267°(1 — ] 7Pty

+ 5—3[1 - 27]—1P"u7(a§V), _%e—ayp.a‘ya'yy

— 3P Y + (/AP + §T N — jeTp
+ 3e—lﬁuaé(¢§v) + %e—lpuaéaév + e—lpuaz-(a(dszv)/dTa) + _g_e—lézpuaéaév

-1.2 py
— 1

#p”, =L ENP Y — 3@/ AP Y

— 3@/ AP Y — IEEENP Y+ 27 @ (/A ey 27

_ e—l(dap"a/d7‘3)'y(az")

+ 37 EMP " — 3 GNP — P2

_ %E—lﬁua"/(aé') _ e_lﬁ"a'y(a(d3z')/d'ra) _ %e-—lpua'y(a(d%v)/d_l})

{a_z¥)

+ 6P + 1T/ AP E — 3 (@A
+ N ST — 1P + § (@A

5 132 ¢

— 3N d%/d) P — § Py 2
+ 2e"‘(2'y)p“,,é“’(daz” /dr%) + e (dP2/d")y)p* 25"
— #(dp". /A% + Yd*” /dr®) — 4p* 27

Cayy)

+ 3¢ Gr)p" 2
— 3 @E(d%/d)p" v 27

—_— 2p-ua2aév

— (@7 A — P (d%7 [de) — WP A ) — 28t

+ 3" — 287" — 20(d%/dr)p" £ + 3E(d%/dNp”) — (> d).

As before, changing ¢ to —e everywhere yields
—F*_, and because (remarkably perhaps) only odd
powers of e occur in the above expression, the radia-
tion field for a dipole is finite just as for a moving
charge. We have

() = 3 @p*/dr") — $(d'p*./dr)EE

(a.r)

— 82" — 4pt Y

— A8t 2" Jdet) — §p .20 (d%” /drd)

— $p*.2%(d%” /dr")

_ 422p-uaz;az‘! + %22p-uv _ 422puaz-(a21)

— AN + JEds /TN

— (u > 7). (24)

The alternative method of calculating the radia-

tion field which we referred to earlier® may also be
used to obtain the radiation field. It is instructive
to give this now in detail since the method admits

many possibilities for generalization to multipoles.
We start from (17) where D now replaces D,..:

1) = dr [ DG — o) & {v(f, S+

v (Bi”yp“ﬁ(r)(xa — 2(NE" — ZV(T)))

U(T: x)

+Mﬁ}d1.

v(r, 2) (25)

(23)

We evaluate this for a point on the world line itself:

z* = 2°(0), and we require the following expansions
2(0) — 2(7) = —12, —372, —L1(d%/d"°),
—der(d2/dY), — -,
p(7) = p, +1p, +37°,
+idp/dr), + -,
(1) = 2, 1%, +37°(d%/d7"),
+ifd/dr, + -+,
1/v(r, 2(0) = —+'{1,, +1:%7,
+ 2 E( /), + -],

The 2’s and p’s (without argument) here refer to
7 = 0. Since

(2(0) - Z(T))2 = 7'27; __1'177422:

— 2o @(d%/drY), + - -

(26)

and

e@(0) — 2(n)) = —e(),

we have for the Green’s function®
1
D@E0) — 2(7)) = ~or e(n8{Q,, —fr'F,

—1ar'@d%/d), + .-} (@7)
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An expression of the form e(7)3{r’g(r)}, where g 3d* = i(d°p"s/

is any function of r, without zeros, can be reduced
quite easily:

e(r)6{7’g(9)}
= (=) lim 8{(=* — K)g(n},

e(T)llim

=+ lim

k=0

8(r — h)
L {6 - )| _

A
‘r-—h}

(1) 8(r + h)}
[27g(n)| )’

o(r + h)}

27 lg(nl)’

8(r + h)
L {( — ()

e Je(n)d(r — h)
= hm{ IZTg(r)l

1 5(1'
= lim {2r el H+
_ ¥

lg(7)]|

Hence (27) becomes

k=0

DG(0) — () = 5= (1L, +7u7,

+1r’@ds/d), + ---}. (28)

The integrand in (25) is now expanded to four orders
by means of (26) and (28):

Pre =2 [ #0)

X {1,, +1r%, +757°#(d’2/dr")) }
X {A*77%,, +B*, +-C*7} dr, (29)

where, A**, B*, C*" are certain constants (there is
no term in 7). It is then clear that the world line
radiation is finite and equal to

F2.(0) = —2C — §(E(d’2/d") A",

and it remains to evaluate A** and C*".
We have

35,0 (1) (26(0) — 25())E"(0) — 27())
= 7-2{a Lur] , 47 b[ml +1,20lurl 47 d[url}

(30)

where
jo” = p"?,
1 = P+ e,
1 = 3P+
+ "% + '@ /dr):",

J. R. ELLIS

A&y + 1
+ 1" + 1p"(d% % /dr%)s”
+ op’@'2/dr") + dp'(d% /a2,

so that
35, p" (1) (2s(0) — 25(0)(" (0) — 27(r)) s
dr ( * o7, 5(0)) )+ 2p"(x)
= (227‘" - a[uv]) + (215“' . 2b[w1)7_
(ﬁlﬂ _ 3c[url — %52‘1[“'1)7_2

+ (3(d8 IIV/dT3) _ 4d[nrl
— 27 — 503(d%/d*))a"") .

In the product of this expression with 1/v(r, 2(0)),
the constant C*” is twice the coefficient of 7, and
A" is minus the coefficient of 7~*. Hence the radia-
tion field (30) at the point 7 = 0 on the world line
of the dipole is given by

F2,(0) = —2{—2(d%"/d7") + 84" + $°p""
+ $((d%/d7%)a"™" — 37(2p" — 20"")
— Fads/d) @ — o))
— $(d%/dr) (2p” — o™},
and this again yields the expression (24).
The electric dipole.

In the special case when p* = ¢"3" — ¢"#* with
g" orthogonal to z* [Eq. (22)] we have an electric
dipole. This may be regarded as having been con-
structed from rigidly connected charges. The poten-
tials and fields have been calculated'” and the radia-
tion field (24) for this particular case can be obtained
in terms of ¢" and Z* by substituting the following:

"’ = g7,
1 = ¢ 4 g,
L = g% + 2qluzﬂl + ¢"™(d%"/d7"),
WEpP/dr) = (@q/d")P + 33"
+ 3¢"(d%/dr") + ¢"(@% /s,

P% = ¢,
P = — (@2,
p(d’2/dr’) = —2¢" — (a(d’%/dr))2,
pP(d%/dr") = —3@(d2/dr)g" — (¢(d2/dr))Z,
% = ¢ = (@2,
P% = —(@)2 + ¢ — (@2,
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P2 dr"), = —5'¢" — (4(d%%/d+")
+ (3(d%2/dr")q" — (q(d’2/d"),

7% = ¢ — (@82 — ¢ — £¢,
7% = —(@F + 22°¢" — 2(@#
+ (5(d’/d"")¢" — (g)(d2"/d),
@p*/dr")e = (@¢*/ds") — (dg/dr")a)e"

— 3(g@) — 3¢
— 3(ga)(d%"/d®) — 3((d%/dr)d".
After collecting and rearranging terms, we find

4..2.0p 7]

FR0) = —4(d@'s™/dr)g" — $#4*
— $E@/dN — H/d)
— HdPg™/dN — K@)

— ()" — (g H(d%" /drY). (31)

Ignoring questions of radiation reaction, it would
be interesting to investigate whether, from a kine-
matical point of view, the expression (31) has any
close resemblance to the properties of the radiation
(7) produced by a moving charge. For instance, if
we specify the kinematical condition that the dipole
moment ¢* must not rotate about the world line
(i.e., ¢" undergoes Fermi—-Walker propagation), does
the radiation (31) vanish for hyperbolic motion as
it does for the case of a moving charge?

This question can be resolved by writing in the
equations of Fermi—Walker propagation,

—¢" = (2¢9)2" (and therefore ¢°g, = constant),
—¢ = (@%/dr)9¢ + GO + E9F,
—(@’¢’/d+") = (d'2/dr)QZ" + 2((d’/d7")g)
+.2((d%/dr") 7" + EQF + 29 + %’ /dr).
-We find

F. = $¢™{(d%" /dr*) + 8% + ((d%2/d*)3"},

(32)

and we see that the expression does in fact vanish
for hyperbolic motion, (d°2’/d+®) -+ #°2” = 0. [This
statement can be made stronger, because we can also
show that (d*2’/dr*) + 2’2" + (3(d°2/d+*))2” will only
vanish when the motion is hyperbolic. It is possible
from (32) that Fi, may also vanish when ¢* is
proportional to (d'2*/d+*) + 2% + (3(d°z/d7’))%";
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this condition includes the possibility of hyperbolic
motion'® ]

The magnetic dipole.

If we need the radiation on the world line of a
magnetic dipole, this can be easily found from that
of an electric dipole. When we replace ¢* by m® in
(31), we obtain —F=:¢ for a magnetic dipole.

THE MOVING MULTIPOLE

We can describe the fields of a 2™-pole by means
of the equations

A“ e LH“'I’I""M
& " ml rareserm
- , 33
, 1
B - ABYavateUm
T
where
DHpr,-.-.-.,, —_ j‘.,,,,...,- (34)
and
Huv”,---rm — n[py,],,...,n’
Hunr,--.rm — H“"(y'.”,")’ (35)

H[M’xh]’l""n = O.

The representation (33) will be a valid representation
of Maxwell’s equations provided Eq. (34) holds and
the first condition of (35) is satisfied (we have
. =0, A*, = 0). The latter conditions of (35)

{m) (m)
are sufficient in view of the identities

Hﬂ'xh""m — Hun(u---r..)
WVibartt¥m [ S5 7XLES 7Y

H[nnv.lr-'"vm =0
B2 TRARE Y —_ .

Solving (34) for a multipole restricted to the world
line 2* = 2°(r), we obtain [following (10) and (13)]:

I (@)

=t f PN DDlr — (D] dr,  (36)

where the tensor p**”*"**’*(r) represents the char-

acter of the 2™-pole in much the same way that

9" (7) characterizes a dipole. Without imposing fur-

ther conditions on p*"*"******(7) than those of (35), we
18 It can be shown that other solutions to this condition (if

they exist) must satisfy

2=k (&fd)? — K = U/{(mr + n)® — 1},

where k, I, m, n are constants.
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can go on to construct concise solutions of Maxwell’s

equations.
We have the following'® derived from (33):

4 “ KPLV* " P
Ar@ =55 [ g

(m)

X 8y Oy " — 2(7)) dr, (37)
" 4 7 siverrorm
7@ =5 [ )

- 8, 8"z — 2(7) dr,

an Dret(x

X 8ym s * (38)

and we evaluate (37) by the same principles used for
a dipole. We have, for the first two differentiations,

47|' f puv,v, Vo a ay,,, L ay.

ml ).
1d
X {_ln<v ) ret(l)}
= 47;:_‘!' w/l pvulv’ m a al’m 1 ay’
id
X {lulv,< d ) ret(l)

1d
- gv:v;(; E;)Dret(l)} dT'

After s differentiations (s < m) we obtain by induc-
tion on s (see Appendix A)

ret(x)

47r {--]
® = — BV1Vg**¥Vm .
(é-)rec(x) o m! _/;wp a avm 1 6,,,“
$(s—1), e ( 1), ,
X{ % m lonba v b,

X Gvs—srtivecarta@va—artsvecaree " Precavy)

% (% %)s_'pm(z)} dr.

The summation is extended to 3(s — 1) or 1s which-
ever is an integer. After completing m differentia-
tions, we integrate by parts successively until D,..
emerges undifferentiated in the integrand,

(39)

@) = [ 4mD.0)

3m—1).3m 1 <1 d)
x [ 2 T\ dr

1 ireeeovn
X {;p l(hlv, ll’m—:r

(m)

X Gomoartivmosrea *°° gv.n—xhu)}] dr. (40)

J. R. ELLIS

The retarded fields of the 2™-pole are obtained by
further differentiating (39):

Fioz) = AL (x) — AlM(2),
(m) {m) (m)
where
At7@) = [ 4mD.(D
(m) —®
im, d(m+1) m + 1 (1 d)m—r+1
X[ L mTat DT v

l “ (vagvs |, 7¥m—srhr
X {v Plivacewnl L l

X gvm—.r-l-s"m—"*’ﬂ .o g""')}:l dT. (41)

From the expression (2) for D,..(l), explicit expres-

sions for the potentials (40) and fields (41) can be
written down (for 2° > 2°) from the formula

[ 4D dr = 1

For example, for a moving quadrupole (m = 2)iwe
have

v

11@1@%@
v

o]
T (42)
woy_L111d Jld|1d l“lﬁl’)
(Fr“( 2) [v dr {v dr l:v dr( v
+ pv“" ¢ + Vg + l"g“")]}] — (w o).

Finally we note that any multipole may be split into
electric and magnetic parts by means of the identity:

s — 1 sne m.ﬁ a .
plﬂ'xvn ¥m — 6[‘1’ qal’:”l 14 5 + Eﬂ'aﬂ mav”’“.'mzﬂ,
where
qav;v;-"vm — paﬂy’““.,még
and
mav.v;--'hn — pa*ﬁv,v,---vmz-ﬁ

are the electric and magnetic multipole moments.

The multipole expansion of a moving source.

The current, potentials, and fields of any moving
point source can be described by multipole expan-
sions:
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F@ = 7@+ > @

m=1 (m)
AL(x) = Ai’et(x) + Z Aret(x)
m=1 (m (43)
Frox) = F‘::,(CE) + Zl Fret(x)

The first terms g%, (z), 1110‘,)‘“(3;), F‘,‘);t(x) are those
0

of (3) and (6). The expansion of the potential is
frequently given in the form

: L (2 )
Arat(z) = + '; m! ( v(T” x) )"x':""m.

With regard to these expansions we may easily show
that it is sufficient to choose the multipole tensors

P "= (7) to satisfy the following conditions in
addition to those identical to (35):
P = (),
P, = 0, (44)
prrnn g ),

The first of these conditions will prevent the ap-
pearance of terms in the four-current of lower po-
larity than m when p******""’= is resolved and (38)
integrated by parts with the help of 4,6"/92" =
d/dr'°; while the second two prevent the appearance
of all solution terms which contribute lower polarity
than m in (40), and likewise could be included in
terms of lower order. [The latter two conditions in
(44) together with the conditions (35) should also
arise in any Lagrangian approach where the same
properties would hold for F¢ix”*""’™] Such argu-
ments may be made rigorous.

Under the circumstances of (44) we find that the
expansions (43) can be written [from (40) and (41)]

e =Ly LR

m=1

X {l JACY LCH L2 ",,,,...,,,,}:I ,
v =71

" d "
Fret(x) = [—vﬁg;{ v }
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S

+ mzl m! v dr
X {% A AL Lt [“nu"'rm—:']}] o (45)

We can illustrate the validity of these expressions
by finding the far fields of an unaccelerated source,
as these are known in connection with general rela-
tivity." With 2* = 0 we have for the product of
any two functions pg,

(1 d )m+1 1 dm+lp

;E’: pq m+1 qd m+1

1 d™
Zm(m + 1) m+2 qd m
1 dgd™p
+ ( + 1) m+1 d d m +
so that we find

) N* IIr® -
P = [l o ]
where
+1
NP =2 E K e R jmmﬂ D
mm1 m!

ol IT*" = 2e8%k" + 2 Z

mee]

X {Gm + D(m + DEE"E"”
— (m 4 DEE” — (m + DEE"3"

khk'l .« k'm—:

+ B0+ (m = DF g} S

These agree with the known fields of an unaccel-
erated source.

Radiation fields

The radiation field of a pure multipole can be
calculated by either of the two methods available
for charges and dipoles. We ask the question whether
the radiation is finite (unique) for any particular
multipole. For instance, is the radiation field finite
on the world line of a quadrupole?

The first (explicit) method for determining the
radiation field is bound to be a very lengthy pro-
cedure (the more lengthy the calculation the higher
the order of the multipole). Nevertheless, it should
be possible to determine at what stage even powers
of e begin to appear in the expressions for the re-
tarded field. The question of finiteness of the radia-

1 J. N. Goldberg, Phys. Rev. 131, 1377 (1963), Egs. (A8)
and (A9).
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tion field on the world line seems to be more easily
resolvable when viewed within the second method
involving delta functions, and it is this method we
now refer to. It should be pointed out that complete
verification by the long method would be desirable.

We here contend ourselves with resolving the
question about the finiteness of the fields; it does
not seem worthwhile working them out in detail in
view of the extreme lengthy computations. The
radiation fields of a moving 2"-pole are obtained
from (41) by replacing D,., by D, and the procedure
for evaluating the radiation along the world line
follows an identical pattern to that for charges and
dipoles as we have already pointed out. Since in
any calculation of this type we need to expand the
integrand as a power series in 7, let us see when in
the sequence dipole, quadrupole, octupole, . . . we
first meet a term in 7~ in the integrand. Any term
involving an even inverse power of + would prevent
the appearance of a unique and finite value for the
fields.

F4((0))
w

-« [ DO L { L o) + 0(%)} dr,
Frae0)

-4 [ DO L {} g {1 L 0@ + o<1>}} dr,
m1(2(0))

ce [ 0L Al L2 o

+ 0(7)} + o({)]} dr.

We find (to the appropriate order) for the respective
multipoles,

Fria=(0)
iH

i 5’(7'){1" +a72) +137'3}

{A“' %, +B‘" +C¥ 7} dr,

1)

=2

Fria2(0))
(2)

-2 f T H((1,, tar?, 487°, +yrt)

{A"' 2 +B“’ +C*¥7, +D"7*} dr,

2) (2)

J. R. ELLIS

Fi2u0)
63}

=2 [ ¥, tar’, +84%, e, +or')

{A“' _4:: +B‘" _27; +C”, +D"~ } dr,

3) )

where we have written

D() = DE(O) — &) = —5= 4()7"

X {]-n +a72; +373: +’YT4; +575’ +- }

Hence

Friae0) = —2{ 0" + 647, [Eq. (30)]

F':;a(z(O)) = —2{ C“' + BAY},

(2)
and F*’,(2(0)) does not possess a unique and finite
(3}

value because the integrand contains the term
BA ‘(‘;,7‘26(1) Hence, we can assume that the radiation
field is finite only for charges, dipoles, and quad-
rupoles, but this is no longer the case for higher-
order multipoles. In a similar way, because of the
number of differentiations involved, we can say that
the potential of the radiation field is finite along the
world line for charges, dipoles, quadrupoles, and
octupoles (not for any other multipoles in general).
It may perhaps be worth noting that these are the
multipoles whose ordinary potentials may be con-
structed from those of rigidly connected monopoles
according to the progression rod, parallelogram, par-
allelopiped, where alternating poles occupy the posi-
tions of adjacent vertices. Presumably higher-order
multipoles in general lack such a construction (in
view of the dimensionality of space). Perhaps, there-
fore, it is not altogether surprising that the radiation
potential is no longer finite for these multipoles.

RADIATION REACTION FOR DIPOLES

The Lagrangian density for a charged particle
interacting with a free external field F%. is

£ =8+ &7+ £, (46)
where
8 = o (Free + FL)FL' + F),
£0 = f_ : Mo, 64z — 2() dr,
L =€ f_ : AR+ AD M x — 2(9) dr.
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The part of the action arising from the last term of
(46), namely,

s2=[e0ae {= [ m2ar win
Ly = ea*(1)(AT'G(n) + Ai:(z(‘r))}
is equivalent to (1/4x) [ j%,4,d*z where %, is given

by (3). For a dipole, we would expect a similar action
term where (12) takes the place of (3), i.e.,

S = —famA d'z
= f d'z f (A%, + ALYp,. 3°5*(x — 2(x)) dr,

= — j: : pm{ f (A5 + AR08 — 2()) x} dr,

[de [ ~tp(rs + PG — o) dr,

[¢)]
Lint =

— " (OFEE) + Fae)]. @)

The complete action for a dipole (with or without
added charge) would then also contain terms de-
pending on the mechanical spin. We assume that 7
is initially an arbitrary chosen parameter in the
variation and we also require to have the Lagrangian
L, and in particular L{}), homogeneous of the first
order in 2, For L{!} this can be prescribed in one of
two ways, which we have not as yet indicated. A
first method® is to multiply (47) by (¢*¢,)}. This
will contribute “extra’ terms to the total Minkowski
force (Which would otherwise only be composed of
the one given by the canonical expressmn L™ /0z,).
A more interesting possibility, however, is to regard
p" as already homogeneous of the first order in 2,
this is by virtue of the relation p*” = 6“',,9"‘2‘8 +
£"*®m 3, and the variation of 7 in ¢* and m* instead
of in p*. The four force resulting from this inter-
action Lagrangian can be compared with the or-
dinary expression for a charge:

oL,  d (aLfﬁi)
9z, T dr 92,
. a,pm d » [P

= e A" — ar (eA") = —eF*"z,,

0 See Ref. 8 p. 74.
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oL d (aLf,‘.:)
2, T dr 8z,

d '
_ -1 af.s __ W na mr
= "fpaﬂF dr (QaF maF )

= —§ " — @ "5, + mFY A+ m FET G,

[We have made use of the identity F**"**! = 0 in
the last term, although this will be strictly admissible
only for the radiative part of the fields F*’(=F%., +

) which we consider shortly.] We note that the
generalized momentum for a charge and a dipole is

p* = G + eA* + ¢ F** — m e,

where G* is the mechanical momentum. A general
Lagrangian method®' will then give complete equa-
tions of motion for the momentum G* and spin 8*:

G = —eF"s, — (F** — q. "%,
+ WM+ m 0,

8 4 2G"" = 29"F" "3, + E"Nom°F .,

(48)

and G* = myc’2* — §""%,. Resolving — 8" into two
parts,

—8" = 52U + £7°PT 2
we have for the torque 7%,

T* = £7°q,F .57 + 2m, F*""%,.  (49)

It may be verified that in the rest-system where
= (1, 0), ¢* = (0, @), m* = (0, m), expressions
(48), (49) reduce to G¢* = (P, F), T* = (0, T), where

F =¢E + ¢xH + (q-V)E
— mxE 4+ (m-V)H,
T = ¢xE + mxH,

These expressions for the force and couple include
an interactionary force arising from the circular
current elements of the electric dipole and the mag-
netic field, and a dual term arising from the electric
field. Together with the usual formulas for the force
and couple, these expressions composing F and T
would be expected from ordinary electromagnetic
theory. (The expression for the power P is 4-E +
m-H and this would also be anticipated in view of
the analogy with the expression ¢V-E for a charge.)
We now write

F¥ = §Fia + 3(Fe + Fi)

# See Ref. 8, p. 77.

(50)
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in the expressions (48) and (49) and we have the
following values for the force and torque of reaction,
for a pure electric dipole (for brevity),

Fresee = —3do(n)Fria(e(7)
- lqa(T)F::éa(z(T))év(T); (51)
Tronee = 374, (NF5@(D)E (1)26(7),

provided the infinite part arising from the second
term of (50) can be taken to have a purely inertial
character (after the fashion of monopoles®).

The value of F:.,(2(x)) occurring in these expres-
sions has been obtained [see (24), (31)] and the value
of F¥’3*(z(x)) can be found from the following:

2puv Z(Fret Fr:iv) 64(1 - Z(T)) dT

[o=].

J. R. ELLIS

475%(x)
_ 1d|1d 2“"14'1“)
41rf D(l)dr{v dr [v dr( v

1 ayr av yia
+ ;P"ﬁ(ﬁﬂl + leg™ + 35l )]} dr,

where ¢ = 2(0) [cf. Eq. (42) for a quadrupole], the
integrand being expanded to the first five orders in
7. Because there are three derivatives involved, the
result will be finite. We should not expect the force
to be orthogonal to 2"

We may investigate the term of the action which
gives rise to the infinite part of the self-force®

= —2r f d'z f_: Pu(D) 8 (@ — 2(7)) f_: D(z — 2(+"))

d 1 d
XF@M@W{

D () (@s — 25(r N — 27(7'))} + l’“(T’)} dr'dr

z)

U(T’: x)

1 d

=“%£W@ﬂmﬁ‘¢%%%mwﬁ

amMAWﬂ—mwwm—fww 2wm} ,

X{ o, 2(0) T o sayf 47 4
= [ uar

with Lagrangian term

p(r) = —21p,(7) f {1,, +19\%° f_: mo(1) (@24 dr,

+ NG /dr)) ‘m)

X (A"N, +B”, + 0
1

where we have written +* = 7 4+ A in the last integral.
We have

6()\)

W) = @nem, = 2'g) [ {1+ 009) 83 .

Although the first term of [ u(r) dr arising from this
expression is merely dependent on the strength of
the dipole and may therefore be incorporated in a

22 See, for example, P. G. Bergmann, Handbuch der Physik,
S. Blugge, Ed. (Springer-Verlag, Berlin, 1962), Vol. 4, p. 178.

the next nonfinite term (in 1/|A]) depends on the
world line, and so this problem of mass renormaliza-
tion is not really solved for a dipole. The problem
also remains as to how far the mechanical spin terms
of the Lagrangian (which we have not specified) may
be “renormalized”’ to account for a similar contribu-
tion from the reactional torque given by Eq. (51).

APPENDIX

The validity of the potential (39) is established by
induction on s. For a specific s, we have on further
differentiation,

D(z) = 41—7 5(%).
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dr . 3e=1) . }s (_l)a—rS!
» — wyLrs m oo —_— .
(13)'"(1:) - m| ‘/:w p al’m an—l ai’.+:{ g (S — 27,)' ’I‘! 2r

x [(g(hhhlh e l'u—sr + l(hg'ﬁ-hlva e lh—nr

1d\™
+ e + l(hlh e lh—nr—xgh—ar7.+1)gl‘t—lr+x':—sr+a e gv.—,v.) '(; J;) Drot(l)

1 d a=r+1
- l(l’xll': e ll‘l—trg'n—:r+a'l—:r+s et gl"—xYa)l't-h(; a—;‘) DKGt(l)]} dT

(the bar written above a suffix denotes that it is not included in the symmetrization)

dr [T svivarrorm
-1 B Dyues o

$(a~1).3(s-2) ('—1)'—'81
X { Z (S — 9 — 1)',’.' 9r (gv.h(hlv.ln

F(s+1) ,3s (_l)a—r+1(s - 9 + 1)8' (1 d )c—rﬂ. }
+ g (s —_ 27‘ + 1)!,,_! 2r (lh-hl(hlh v lh—-trgh-n+xh—ar+- e gv--—u-)) ; dT Dret(l) d‘r

14\
e lh—:rgh—:ﬁ-x'n—:r-h e gh—xh))<— E;) Dl"ﬁ(l)

v

=0

:47;:[! ‘/‘—m p‘“”"”p" a’m a'm—x e ah+n

Poglde (__1)rHis 4 1)1 l: 2r
x { r=0 (s - 21‘ + 1)! 7'! 2' S + 1 (gv,+n(ulh et lvc—:r+ngn—:v+:h—’r+a " g"—"'))

—2r+1 14\
+ i_é—_ET-'_—— (ln+xl(’xlh tee l':—nrgh-ar+|vc—-r+n ot g':—xh))] : (—v‘ ET_) Dret(l)} dT‘

Result (39) now follows with s 4+ 1 in place of s on account of the identity
2rg7.-h(l’xl’l .0 lh—nr+lgh~—|r+ah—lr+a Tt gl’u—-xh) + (s - 27‘ + 1)l1.+xl(hlh cr lh—n
X ch—nrhh—lH—l iy = (3 + 1)l(l’:lh e l’-—lr+1 Jricsrrarecsrts " Gravern)+

The factor 2r arises because there are two ways of arranging the suffixes »,,, and » in g,,,,,, and r
ways of arranging g,, ,.,, between the other r — 1 ¢’s. The factor (s — 2r + 1) arises because there are this
number of ways of arranging [,, ,, between the s — 2r other I's.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 7 JULY 1966
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This paper is intended to provide the axiomatic study of nonequilibrium quantum statistical
mechanics with some simple and rigorously solvable models. The models considered here are obtained
as generalizations of the Ising model. They illustrate and allow a rational discussion of the following
concepts relevant to the theory of irreversible phenomena: coarse-graining and time-smoothing,
ergodicity, recurrences, impossibility of a Markovian description of the approach to equilibrium
for some physical systems, justification of the various random phase assumptions, properties of the
interaction responsible for the approach to equilibrium, master equations, ete.

I EXPERIMENTAL BACKGROUND

'HE phenomens called free-induction relaxation

exhibits an oscillatory approach to equilibrium.
From the first time it was observed, it was inter-
preted’ as the result of the dipolar interaction
between nuclear spins arranged in a rigid lattice.

Just to show that what follows is not only a
mathematical game, but also a topic of some definite
physical relevance, we shall recall briefly the
experimental situation. This is also intended to
provide a safer basis for the present theoretical
considerations.

A CaF, crystal is placed in a magnetic field B,
the direction of which we shall call z. The system
is allowed to reach thermal equilibrium. When this
is achieved, a rf pulse is applied to turn the net
magnetic moment u in the z direetion, orthogonal to
the z direction of B. The time-evolution of the z
component u, of p is then observed. It exhibits an
oscillatory decay to zero, starting from a nonzero
initial value. This is interpreted as the result of the
dipolar interaction between the (I = 3)-spin of the
fluorine nuclei. No relaxation via lattice vibration
is needed to account for this phenomena, so that
the spin system may be considered as isolated. It
has been shown that the interaction responsible for
this approach to equilibrium can be reduced to the
following form (we do not want to worry here
about units):

V = X (aidid; + byoia)) —B 20, (1)

where %, § --- denote the position of the fluorine
nuclei, and ¢%, ¢*, ¢* are the Pauli matrices. In this
form the model has not been solved exactly. Even
if the following simplifying assumption does not

* This research was carried out at the Institute for Fluid
Dynamics and Applied Mathematics of the University of
Lf;.;-yland under the support of the Office of Naval Research—

Contract NONR 595 (22).
11. J. Lowe and R. B. Norberg, Phys. Rev. 107, 46 (1957).

lead to a quantitative agreement with experiment,
it provides a qualitative description of the observed
oscillatory approach to equilibrium, and makes the
model exactly solvable:

a; =0 forall (4,7). )

This form of the model is the basis of our considera-
tions. The aim of these is indeed to discuss the
consequences of the definite approach to equilibrium
encountered in this problem. The remarkable fact
about this model is that it does not involve any
kind of repeated random phase assumption (the
quantum analog of Boltzmann’s Siosszahlansaiz),
and that no approximations at all are needed. The
approach to equilibrium is shown to be a consequence
of only the particular choice of a wide class of
initial conditions (connected with the partial in-
formation obtained from macroscopic measurements)
and of the peculiar form of the Hamiltonian. Be-~
cause of its great simplicity, this model also allows
some enlightening of many aspects of the theory
of nonequilibrium processes. This is the prineipal
motive for the present investigation.

II THEORETICAL ANALYSIS OF THE MODEL

We express the main features of our model in a
quite naive mathematical form. We try to proceed in
such a way that:

(i) the simplicity of the model is exhibited;
(ii) the road to the slightly more sophisticated
considerations of the next section is prepared.

Consider an infinite linear chain (in several of the
considerations to come it is convenient to consider
the infinite linear chain as the limit of a finite ring)
of fixed spin-} identical particles. The quantum
mechanical evolution of the system will be described
by a continuous one-parameter group of unitary
operators { U’} acting on the Hilbert space

1198
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o= I.I®®i’ (3)

where the index ¢ runs over all the particles and
©° are the identical replicas of the two-dimensional
Hilbert space used to describe each individual particle.
We furthermore suppose that U* can be written as
U = H Ur‘n (4)
n20

where all the unitary groups {U.} are defined on 9,
commute among themselves, and are respectively

generated by

Ho=

~B 2 o},

em) 2 oioti, for n >0,

®)
H 3

I

We finally suppose that the real-valued function
¢(n) satisfies the following conditions:

(i) e(n) is monotonically nonincreasing in n,
(i) lim e¢(n) = 0.

n—o

(6)

These assumptions correspond to physical situations.
For the moment we do not specify the exact form
of ¢(n), nor do we indicate whether e(n) reaches
its asymptotic value for finite n. Let us write for
the generator of {U'}:

H= ) H,. ™
n=0
Incidently, we note that
H' =H,+ H, ®

is the ordinary one-dimensional Ising model with
nearest-neighbor interaction only. We see that it
is indeed quite essential for the approach to equi-
librium to consider the generalized form of the Ising
model, where the interaction extends over all pairs
of neighbors.

Usually the observable of interest in the Ising
model is

8= Yo ©

which commutes with H. In this sense the ordinary
Ising model, even generalized in the above way,
is a classical system and is moreover only suitable
for describing equilibrium situations.

Here, on the contrary, we want to consider the
time-dependence of the expectation value of the
observable:

S = Z o7, (10)

1199

Let us now denote by (S°)(0) the initially ob-
served expectation value of S°. We now have to
specify the initial state of the system. As usual,
many different density matrices p(0) lead to the
prescribed expectation value. If we now speak the
language used, for instance, in Ref. 2, we say that
these various p(0) correspond to different micro-
scopic states but are macroscopically equivalent.
Each of them would, in principle, lead to a different
time-dependence of (S*)(f). We then have to make
an assumption on the initial state we want to con-
sider. The most reasonable choice for this is the
state which maximizes the microsopic entropy, and
is subject to the constraint:

Tr §°0(0) = (5 (0). ey

If one takes the usual expression for the entropy,
the solution of this problem is well known (it is
just a transposition of one of the most satisfactory
ways to derive the canonical distribution®):

p(0) = €% /Tr e, (12)

where { is determined by the constraint (11).
Incidentally, we remark that (12) could also be
justified in a more traditional (but approximate)
way, following more closely the actual preparation
of the system in the laboratory as described in the
first section (see again Ref. 1).

The problem now is to calculate

(87 (&) = Tr §(%) (13)

with
p(t) = U'p(O)U™, (19

where p(0) and U* are prescribed by (12), (4), and (5).
The expression (13) is more easily calculated if one
writes it in the form

(§)(®) = Tr {UT'S°U*p(0)}. (15)

Since Tr is independent of the basis in which it is
evaluated, we choose as a convenient basis:

\I,(ai) = H@ lpm‘) (16)

.?G. Emch, Lecture notes, 8th Theoretical Physics In-
stitute, University of Colorado, Summer 1965. Preprint JILA,
University of Colorado and Natl. Bur. Std., Boulder, 1965.
For further details see G. Emch, Helv. Phys. Acta 37, 270
(1964); <bid., 37, 532 (1964); bid., 38, 164 (1965), and ref-
erences quoted therein, See also: G. Emch and ‘C. Favre,
Preprint Geneva 1965.

¢ J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955). See
also the book published under the same title by G. W. Mackey

W. A. Benjamin Company, Inc.,, New York, 1963).
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where {¢..} (with a; = =1) is the basis defined in
each ' by

a'z'/’w = a;¥a,- (17)

We next note that p(0) is diagonal in the basis
{¥(a.}, 50 that only the diagonal part of (U™‘S*U*)
is relevant for the evaluation of (15). Now, for any
bounded operator A acting on 9, it is convenient
to define

.4 = U,AU,. @18
Since the U commute among themselves,
U-'sUt = {"I>IO n,}8°
= 2 (T wje
= u's.
Let us then first calculate
Ut = {I] Ws.i}e%, (19)
where
U4 = U5 AU, (20)
with
Us.; = exp (+iBojt). (21)
Since
of commutes with o7 for j # 7, (22)
one has
Wo§ = Us, .07 (23)
One can now use the property
(@ =1
to write
Us.; = I cos Bt + {0 sin Bi. 29
Combining now (23) and (24) one gets:
Uie® = oF cos 2Bt -+ o sin 2B¢ (25)
and therefore
U§U* = ({nI>Io 1:}8%) cos 2Bt
+ ((TTu}s")sin2B:.  (26)

n>0

This takes care of the influence of the magnetic
field. Next, we must calculate the influence of the
spin—spin interaction. To do so, let us first evaluate

o = (I Ui}t @7)

G. EMCH

where U; ; is constructed in the usual way from
(28)

For reasons quite analogous to those encountered
above, (27) reduces to

t ¢ t
10'::': = ul.i—lul.ia:y

which can be readily calculated (using the same
technique as for the B dependence) as:

Uie; = of cos® [2e(1)]
— $ol(oiy + ol41) sin [4e(1)4]

— oi1050i,, sin® [2¢(1)2].

U,.; = exp [—ie(l)oi04.1].

(29)

(30)

At this point it becomes more and more intricate
to write the successive explicit expressions for

Wwlief,  WuUler,  ete
However, we should remember that we are not
interested in the evaluation of the operator (26)
for itself, but in the expectation value (15), to
which only the diagonal part of (26) contributes.
A somewhat closer glimpse to the form of the succes-
sive U, shows that the only part of

U euUt
which contributes to (15) is
ot I cos® 2¢(m)t.

The reader can rapidly convince himself that
U 'etU*

cannot contribute to (15). We immediately have the
desired result:

(8(t) = (SHO)[I] cos® 2em)?] cos 2B:.  (31)
One also obtains

(S = —(SHO)[]T cos® 2¢(m)¢] sin 2Bz, (32)

(S°)(%) = (80 = 0. (33)

The generalization of the above result from a
one-dimensional chain to an n-dimensional crystal
is obvious and can be taken care of simply by
replacing e(n) by e; and making the subsequent
trivial changes. The resulting expression is known
and provides a qualitative (if not quantitative)
agreement with experiment' if the e are properly
adjusted. We gave the calculation with some details
for the case of a linear chain with the following
reasons:
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(1) To emphasize that no approximation and no
supplementary ‘‘statistical” assumptions are in-
volved in the derivation of (31)-(33) when one
starts from

(a) the generalized Ising-model microscopic
evolution as prescribed by (4) and (5);
(b) the initial condition (12).
{This remains true also for any n-dimensional Ising-
model generalized in the sense described above.)

(2) To provide a basis (in a hopefully intuitive
language) for the generalized considerations, which
is the topic of the following section.

III RELEVANCE TO THE GENERAL THEORY OF
NONEQUILIBRIUM

A. Particularization of the model

The main purpose of Sec. II was to exhibit the
presence in Eqgs. (31)—(32) of the function

1) = II cos® 2em)t. (34)
n>0

In general, one could try to discuss the behavior
of this function for any e(n) satisfying the very weak
conditions (6). However, our purpose is not to
produce the oddest analytical time behavior one
could imagine from a particular model, but rather
to exploit the greater simplicity of the model as
extensively as possible in order to gain some insight
into the general theory and the pseudoparadoxes
and difficulties usually met. The very problem in
which we are interested is to see how and why a
macroscopic approach to equilibrium is compatible
with a purely quantum mechanical microscopic de-
scription, in order to bring to light the central role
played by the lack of information involved in any
classical measurement on a quantum system.

We therefore postulate e(n) to have the form

en) = 27", (35)

The advantage of this choice is that f(f) has an
exceedingly simple form which can be deduced from
a formula due to Euler:

f()) = [sin (eof)/(e?)] (36)

This is a positive function which obviously leads
(with an oscillatory approach) to stationary value of

{8):

lim f(¢) exists and is zero!

t~ac0

37)

This result corresponds to an infinite linear chain
with the spin-spin interaction extending over all
pairs of neighbors. In the case of a finite ring, or
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equivalently, of an infinite chain with a cut-off

described by
em) =0 forall n > N, (38)

one can also calculate exactly the corresponding

fr(® = INI cos’ 2e(n)t
= [OWy(®), (39
where
Wx(t) = [sin e(N)t/e(N)E]°. (40)

The function Wx'(¢) therefore, takes care of the
“finite-size effects’” (for the finite rings) or for the
finite-extension of the interaction (for both finite
rings and infinite linear chain). It shows that, for
times ¢ <« T'y with

TN ~ 2N7|'/€o,

(41)

these effects are negligible. This remark is relevant
for the recurrence problems and is confirmed by the
fact that for finite times

lim Wy(s) = 1.

Now

(42)

This, moreover, shows explicitly that, in the in-
finite-‘‘volume” limit, the recurrence paradox re-
solves itself naturally without any recourse to
more or less ill-defined probabilistic statements such
as ‘“‘only small deviations with the tendency of
approaching equilibrium occur often.”

B. Generalization of the model

One of the reasons why we explicitly did the
calculations of Sec. II was to make obvious the fact
that the model, as presented there, is open to gen-
eralizations. The first point we wish to make is that
the only property we used of the initial state p(0), as
defined by (12), was the fact that p(0) is diagonal in
{W 4 }-basis (16). Therefore, the result (31)-(33)
will remain true without any modification for quite
a large class of initial states, namely for the p(0)
which are diagonal in (16).

Secondly, these results would also remain true if,
instead of the one observable S°, we would have
been interested in any observable A of the form

A = Z a,'U?.

Besides 8%, which is obviously recognized as a macro-
scopic observable, there is, therefore, a wide class
of observables which also exhibit an approach to
equilibrium, and are indeed related to a much finer

(43)
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description of the system than the original one
provided by 8° alone. In fact, the set generated by
all of the observables of the form (43) is maximal
Abelian. In a less pedantic language, one could sim-
ply express this property by saying that the set of the
observables (43) is a (over) complete set of com-
muting observables (ecsco). More simply, the simul-
taneous measurement of all the observables which
generate this set would lead to an information which
cannot be improved by any compatible quantum
measurement performed at that same instant. Using
now a language even more familiar to statistical
mechanicists, we could say that this generalized
version of our model leads to an approach to equi-
librium which does not require any real coarse-
graining, or expressed in a better form, that the
macrocell defined by the observation® are all one-
dimensional. This corresponds to the situation
usually referred to as fine-graining. That a definite
approach to equilibrium is compatible with fine-
graining illustrates a remark already made by
Pauli* a long time ago. He emphasized that one
of the few fundamental differences between classical
and quantum statistical mechanics is that an in-
formation which is complete at a given instant
remains so in time in the former description, whereas
it can be lost in the latter. This is essentially due
to the fact that, when the Hamiltonian does not
commute with the esco considered, a state p, initially
diagonal in the proper basis of this esco, does
not remain diagonal; however, the nondiagonal ele-
ments of p which appears in the course of the evolu-
tion are of no relevance for the determination of
the instantaneous expectation values of the ob-
servables belonging to the csco of interest. The
generalized version of the model discussed in this
subsection precisely provides an illustration of this
remark. Incidentally, this is related to the fact that
the quantum master equations, either fine- or coarse-
grained, are formally identical.’ We should also
recall at this point that no random phase assumption
is needed in the fine-grained case. This i3 consistent
with the fact that the coarse-graining projector D,
introduced in Ref. 2, coincides in this case (and
in this case only) with the projector introduced
by von Neumann® in his discussion of the measuring
process.

C. Illustration of the coarse-graining concepts

We now consider the particular case of a (large
but) finite ring, comprising say M sites whose

4+ W. Pauli, Nuovo Cimento, Suppl. 6, 166 (1949).

G. EMCH

positions are denoted by the indext =0, -+, M — 1.
Each site is occupied by a 3-spin particle. The time
evolution of this system is again assumed to be
given by (4) and (5) with the supplementary con-
dition (35), complemented by any cut-off compatible
with the ring structure. We moreover assume for
simplicity that B = 0 (at least for ¢ > 0). Now,
instead of being interested in S® we consider the
following particular observable of the family (43)

4= FRIQ -, (44)

where ¢ is the usual two-dimensional Pauli matrix.
The spectral decomposition of A is thus

z
Oy =

A = D, A(A)E, 45)
A
with A running over the two indices 4+ and —.
One has obviously
A(E£) = +1, (46)
E, =3I * 4),

where E, are two orthogonal projectors with the
following properties:

E.9 C 9

(the equality sign is valid for all ¢ except ¢ =
and

(47)
0)

dim E, = 2%

One can now use the language systematically estab-
lished in Ref. 2 and say that the E, are the two
macrocells of our system: An observation based on
A only can provide an information on the relative
populations of these macrocells, but cannot lead to
any information on the inside of them. One can
furthermore introduce the maximal representative
of the two macroscopic equivalence classes which
occur in this model:

Wy = E /2% (48)

The macroscopic state {ps} corresponding to any
given microscopic state W' is defined by:

pt = Tr WE,. (49)

Following the considerations developed in Ref. 2
we are only interested (for the prediction of the
evolution of the expectations values of A) in the

time-dependent pS with the initial condition
W' = 2 piWa (50)
A

and the microscopic evolution equation
W= U 'W°U".
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This problem can be solved directly (without the
need to go through the master equation techniques)
following the calculations of Sec. II. We obtain

pi = 3(1 £ of(®), (51)
where « is determined by
pe = 51 £ q). (52)

In this form the model will lead to further considera-
tions.

D. Ergodicity

The first problem of interest in the discusssion
of nonequilibrium problems is to check whether a
given system approaches equilibrium in some very
restricted sense, namely

T

lim 2 [ s (A)e).= (@), (53)

T 1}
where (A) is the microcanonical equilibrium value
of the observable A. Although it is clear that the
left-hand side of Eq. (53) has hardly any physical
(operational) sense in connection with the problem
of the true approach to equilibrium, its evaluation
has some relevance to the problem, for the following
reason: if (A )(f) ever approaches a limit as ¢ — «,
then this limit should be equal to the ergodic
average of (4 )(t) which by definition is the left-hand
side of (53) [There is no point to discuss here ergodic
limits other than the ordinary (C, 1)—Cesaro aver-
age.]

One could calculate the left-hand side of (53)
directly from (51). One would then see immediately
that (53) is satisfied when the length of the cut-off
(described by N) and subsequently the size of the
ring (described by M) both go to infinity

lim lim fy(¥) = lim () = 0, (54)
>0 N—co t—eo
and consequently
lim lim p.(¢) = %, (55)

o Noow

which corresponds to the microcanonical distribu-
tion.

We now discuss another approach which can be
illustrated by the model in the form discussed in
Sec. III.C. A general criterion for (53) has been
proposed® in the case of discrete spectrum of the
Hamiltonian. This criterion reads as follows [see
also (68) below]:

Z TI‘ (PMWAPIIEA')

= Nuo/N; forall E,,E.. C Sj, (56)
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where W, is defined as above [by (48) in the present
case], Ny = dim E,, N; is the dimension of the
energy-shell S;, and P, are the eigenprojectors of
the total Hamiltonian.

To make this condition clear, we first have to
state precisely what we mean by energy-shell. An
energy-shell is defined as any eigenprojector of the
following operator

H, = ZA: (Tr HW 4)Es, (657)
to which we refer as the macroscopic energy for
reasons which have been explained.’

In the present model

Ho = 0, (58)

and therefore there is only one energy-shell: the
whole space $ defined by (3). We then have

5=2M.

(59)

To see whether (56) is satisfied or not, we proceed
as follows: First, we remark that the whole Hamil-
tonian of the system as it results from the definition
(4), (5) is not relevant for the evolution of our
model, but can be replaced by the effective Hamil-
tonian

H, = o Eo em)(oh + ohr-n) (60)
n>

without changing anything to the evolution, as it

should be clear from the detailed calculations of

Sec. II. This Hamiltonian is diagonal in the basis

of O defined by

20 = I1 ® s, (61)
where
o'es = Bios (62)
with
8. = 1. (63)
Let us now remark that
PpgW.Pyp, = Pys,/N; forall {B8:}, (64)

where P4, are the one-dimensional projectors on
the respective pure states ®,;.

Therefore, if the spectrum of H, were nonde-
generate, (56) and consequently (53) would be
satisfied. However, in the model considered here,
H, is degenerate and, consequently, there appear
terms of the form

Plﬂ-‘)WahP(ﬂ'i) (65)
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in the summation (56), where {8;} and {8;} would
correspond to configurations having the same total
energy.

Given any configuration {8;}, let us denote by
{B.}* the configuration obtained from {g;} by chang-
ing only B, into (—pB,). Let us, furthermore, denote
by ps. (resp. w,) the restriction of the operator
P, (vesp. W,) to the subspace §° (resp. 9°).
We can now remark that (65) vanishes unless

{Bi} = {B:}* (66)
and that (65) is then equal to
(ps.waps.) & (,-I,l, & Ds.)- (67)

From the symmetry of the model, it is, further-
more, evident that two configurations {B;} and
{B:]* can correspond to the same eigenvalue of H,
only if this eigenvalue is zero. Therefore, for all
eigenprojectors P, corresponding to a nonzero eigen-
value of the effective Hamiltonian, we have

PWiP, = P,/N; (68)

valid for all P, except P, (the eigenprojector cor-
responding to the eigenvalue zero of H,). At this
point, we draw the attention of the reader to the
importance of Eq. (68) (satisfied for ell P,!) in
the general theory developed in Ref. 2 for the
existence and the uniqueness of an equilibrium state.
The fact that P, does not satisfy (68) allows us,
then, to evaluate the departure from ergodicity
(in the sense of Ref. 2) in our model. It is, in fact,
a simple matter of playing with the degenerate
eigenstates corresponding to the eigenvalue zero to
evaluate the contribution of this level to the ergodic
average. One finally obtains

T
1im%[) dtpi = 31 + P — 1.

T

(69)

This result completes (55), which was obtained
more directly. We remark that, besides its theoretical
interest, this evaluation of the ergodic average in
the case of a finite ring (or of an infinite linear
chain with a cut-off in the interaction) can be
generalized quite easily to the case where e(n) has
a more general form than that assumed in (35).
This allows us, in particular, to determine, without
calculating the exact time dependence of the expecta-
tion value of the magnetization, the value around
which it oscillates and which is usually referred to
as its equilibrium value.” In the case of an infinite
chain with an interaction extending to infinity, this
equilibrium value is zero, the magnetization then
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oscillates above its equilibrium value and, in fact, ap-
proaches it with a damped oscillating time behavior.
That this equilibrium value corresponds to the
microcanonical distribution is readily seen.

In the above remarks we were careful to describe
the approach to equilibrium in terms of expectation
values of macroscopic observables. It is not by
accident that we avoided statements in terms of
microscopic density operators. The reason for this
is that it is only in the macroscopic sense that the
states considered here approach equilibrium. More
precisely, given any state W° of the form (50), we
do not assert that W* approaches, in general, the
microcanonical distribution in the course of time.
We only claim that the macroscopic equivalence
class of W' [defined through (49) as the set {p/}}
approaches the macroscopic equivalence class (de-
fined by ps = N,/N;) of the microcanonical dis-
tribution. This statement is obviously sufficient to
account for the macroscopic approach to micro-
canonical equilibrium, even if no such approach
can be traced when one uses only arguments per-
taining to the microscopic description. By these con-
siderations we hope to strongly emphasize the
central role of the concept of macroscopic equiv-
alence classes of microscopic states inherited from
the notion of coarse-graining (even in cases where
not all the assumptions usually made® are satisfied!).

E. Zermelo’s and Loschmidt’s Paradoxes

We already mentioned in Sec. III.A how this
model allows us, without any recourse to probabi-
listic arguments, to eliminate the recurrence paradox
by a passage to the limit of infinite size and infinite
extension of the interaction, and then obtain a
bons fide approach to equilibrium. This takes care
of Zermelo’s paradox in the sense predicted by
Boltzmann (and not only in a probabilistic sense!)
in his well-known exclamation ‘“Then, wait!” The
expression (40) states precisely “how long!”’

This model also shows how an approach to equi-
librium can be compatible with the reversibility of
the microscopic evolution.

This reversibility manifests itself through

16 = (=1 (70)
and, incidentally, also through
fv@) = fv(=1) (71}

(which, however, is less surprising). Equation (70)
can be interpreted in two ways. One could say that
the behavior for ¢ < 0 is simply irrelevant since
it cannot be produced in the laboratory. This is,
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however, not quite satisfactory and we feel that a
better interpretation seems to be the following:
Given a situation at time ¢{ = 0, we have the same
information on ‘‘which situation it comes from” as
we have on “which situation it will evolve to.”
In short, the security of a prediction is the same
as that of a postdiction. This illustrates also the
challenge raised when Boltzmann reportedly an-
swered to the critics of Loschmidt’s type: “Go ahead,
reverse them.” Our model indicates a slightly more
sophisticated answer which we believe to be of quite
a general character: If we ‘“‘reverse the time” at
a given instant, say ¢t = ¢, taking only into account
the macroscopic knowledge we have of the system
at this particular instant ¢ = i, we shall also have
an approach to equilibrium in the direction of the
past, and the system will in general not pass again
through its initial state (the verification of this last
statement cannot be made since it was decided, at
t = i, that any information besides the one at
that time ¢ = ¢, is forgotten). On the contrary, if we
keep records of what happened on the system be-
tween t = 0 and ¢ = i, and then reverse the time
at ¢ = {, taking into account all the information
we now have, the system will return to its initial
state (at time ¢ = 0) and then decay to equilibrium
in the direction of the past in agreement with (70).

F. The Non-Markovian Character of the Evolution

In statistical mechanics, one of the favorite ways
to obtain (with relative ease) an equation describing
(at least within some approximation) the actual
approach to equilibrium is to make an assumption
of the kind of Boltzmann’s Stosszahlansaiz. The
quantum analog of this assumption is the so-called
repeated random phase assumption. Pauli used it
to derive his famous master equation, hereafter re-
ferred to as the PEM. The nonmechanical char-
acter of this assumption is evident. Its result is
that the reduction of the microscopic unitary evolu-
tion to the macroscopic subspace® becomes a semi-
group, the generator of which is dissipative in case
of an actual approach to equilibrium. The evolution
obtained in this way is usually referred to as a
Markovian process. The validity of this assumption
has been extensively questioned in the last ten years.

The main property of the present model, in the
different variations presented here, is that no re-
peated random phase is required to solve it exactly
and to obtain an actual approach to equilibrium.
The fact that such an assumption is not needed
in the derivation of the result still does not prove
that the evolution is non-Markovian. To show this

1205

we proceed ad absurdo. Suppose then that the evolu-
tion were Markovian. Under the usual continuity
assumptions (which are satisfied here!) the evolution
of a Markov process is determined by the Chapman-
Kolmogorov equations. These equations are nothing
but the mathematical abstraction corresponding to
the PEM. In a perhaps not quite orthodox® form
(but equivalent to the usual one), the PEM ecan
be written as

(d/dt)p" = —Ap' (72)

defined only for ¢ > 0. A is an operator acting in
the macroscopic Liouville subspace.” A is positive
and Hermitian in the usual PEM. When A is
bounded, (72) can be integrated (without any “if”’
and “but”) to give

pt — G_Atpo. (73)
If, moreover, A has a discrete spectrum, the p,; are
discrete superpositions of nonincreasing real ex-
ponentials.

In the variation of our model considered in Sec.
III.C, the macroscopic space is two-dimensional.
Therefore A is obviously bounded and has at most
two distinct eigenvalues. As a consequence, the p,,
if described by a PEM, should be the superposition
of at most two nonincreasing real exponentials. We,
however, have the explicit form (51) of the p,;. Even
in case where both the size (M) of the system and
the extension (N) of the interaction are infinite,
these p, cannot be written as linear combination
of two nondecreasing real exponentials. Conse-
quently, by this reduction ad absurdo, we proved
that this variation of the model presents a macro-
scopic approach to equilibrium which cannot be
described as a Markovian process. This result ap-
parently depends on the form of the function e(n)
as ascribed by (35). It is, in fact, the expression of
a general theorem.” One could now still argue further.
Very often one sees that a system, the evolution
of which has to be described by a generalized master
equation (GEM), can, however, present an evolution
which, in the long-time limit, can be described by
a PEM, at least if one does some kind of time-
smoothing.? This, however, is not the case here,
as might readily be seen from the time-smoothed,
long-time limit of (51), even if one first carries out
the limit of infinite extension of the interaction.
This last result now depends strongly on the special
assumption (35). In particular, it can be seen that
there exist some other particular spatial dependence
of the interaction (which are indeed closer to the
actual spatial dependence of the dipole-dipole in-
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teraction!) which would lead to an asymptotically
exponential decay to equilibrium.

From the point of view of the axiomatics, the
interest of this version of the model, as discussed
above, is that it exhibits explicitly an approach to
equilibrium which can be predicted exactly, and
which can in no sense be described (even in some
approximation) as a Markov process, the differential
evolution equation of which is of the PEM type.
Therefore, if one wants to describe the evolution
of the model through a master equation, one has
to consider a GEM which cannot be approximated
by a PEM. One could obviously carry out the
evaluation of the kernel of the GEM for this model.
This would, however, turn out to be a somewhat
tedious task, especially in the case of an interaction
extending in space as (35). The simplicity of the
model would anyway be lost in the process as one
could already figure out by feeding the result (51)
into the Laplace transform of the GEM. Similarly,
one could also discuss on this model van Hove's
conditions of diagonal singularity and interconnec-
tion of states. This would, however, not lead to an
information deeper than that obtained from the
general theory.? We therefore do not pursue further
in this direction here.

Iv CONCLUSIONS

The formal simplicity of a generalized Ising model
allowed us to calculate exactly the time evolution
of the transverse magnetization as well as some other
related quantities, starting from a wide class of
initial conditions. The exact solubility of the model
was used to discuss several problems connected with
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the actual approach to equilibrium. We succeeded
in stating precisely some of the persistently unclear
statements related to the phenomena.

The two main ingredients of nonequilibrium sta-
tistical mechanics, namely the unitary, mechanistic,
microscopic evolution and the partial macroscopic
information connected already with any classical
measurement on & quantum system, were proved
to be sufficient (in principle) to ensure in some cases
an actual approach to equilibrium if one evaluates
correctly the infinite-size limit. In particular, the non-
necessity of any kind of repeated random phase as-
sumption was exemplified by a truly non-Markovian
model.
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The analytic properties in the complex k plane of the S matrix for scattering by a screened Coulomb
potential are studied. Particular attention is given to the limit as the screening radius tends to infinity,
so as to show, in an explicit example, the effect of the tail of the potential on the properties of the
analytically extended S matrix. It is shown that the pole configuration obtained in this way is different
from that obtained in the usual description of the analytic properties of the Coulomb S matrix.

1. INTRODUCTION

T is well known that the analytic behavior of

the nonrelativistic S matrix for infinite range
potentials depends fundamentally on the way the
potentials behave at large distances. In particular,
this analytic behavior is strongly affected by the
existence of an infinite tail, however thin it may be.

It seems to us, however, that this dependence
has never been shown explicitly and conveniently
in a meaningful example. A rectangular barrier (or
well), whose range tends to infinity' (thus estab-
lishing a constant potential in all space) does not
provide us with an interesting situation. A soluble
and convenient problem for this purpose is that
of a screened Coulomb potential. By varying the
radius of the screening layer, we tend continuously
to the Coulomb potential case. However, as we
may see, the properties of the S matrix in the
complex momentum plane, as obtained by this
limiting process, are not the same as those obtained
by the usual analytic extension of the Coulomb
S matrix to the complex momentum plane We
believe that the procedure of analytic extension
used here is a more natural one, and that, if nothing
else, we can learn from this example something
about the treatment of this sort of infinite range
potentials.

We take a potential of the form

V(@) = uC/r, r < b,
= 0, r > b,

where C is a positive quantity and x =

€y

+1 for

* Most of this work was done while the authors were at the
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treatment received there. Special thanks are given to the
staff of their Centro de Célculo for extensive use of the IBM
1620 computer.
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! H. M. Nussenzveig, Nucl. Phys. 11, 499 (1959).

? C. Moller, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 22, No. 19 (1946).

repulsive, and g = —1 for attractive, potentials.
We choose as unity the quantity mC/A* = 1/a,,
where a, is the first Bohr radius for an attractive
potential of strength C, and m is the mass of the
particle. Thus we measure lengths (the range b,
for example) in units of @, and the momentum k&
in units of 1/a,. The dimensionless product kb
is independent of the potential strength and is a
convenient variable for many purposes. We also
introduce the quantity N\ = u/k, where 7 = (—1)%
We call Re (k) = z, Im (k) = y, so that k = z + 7y.

The 8, function for the Ith partial wave can be
written down directly. It is

Sl(k; b) = - Y§2)(k) b)/Yfl)(k, b)) (2)
where

Yi (k, )

T+ DLFO 4+ 1 4 )20+ 1; —24kb)
X [HDy(kb) — iH (kD)
+ F.(0 + N 20 + 1; —2ikb)
X [HD,kb) + iH,(eb)])
= —ikb Fi(1 + 1 + \; 20 + 2; —2ikb)
X [H{D(kb) — B (kb)] + (21 + 1)
X 1Fi(l + N; 21+ 1; —24kB)H P, (kb)

with j = 1, 2. The last expression is obtained from
the second one by well-known relations among
the confluent hypergeometric functions.

From the facts that ,F,(a; c; z) is a real function
of its arguments, that the complex conjugate to
H® (z) is H{ (2*), that

H{(—2) = exp [ir(l + DIHNG),

and the use of the Kummer transformation of
the confluent hypergeometric functions, we see
immediately that (2) satisfies the well-known®

3 R. G. Newton, J. Math. Phys. 1, 319 (1960); A. Martin,
Nuovo Cimento 14, 403 (1959).

)
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symmetry properties of the §; function such as
Sk, 8)Si(—k, b) = 1, St(k, b) = Si(—k* b),
and 8S;(k, b)S*%(k*, b) = 1. These relations imply
that the zeros and poles of S;(k, b) in the complex k
plane are symmetric with respect to the imaginary
axis, and that if k is a zero of 8,(k, b), k* is a pole
of the same function. Thus we need only study the
half-plane defined by Re k > 0.

We are now considering fintte (nonzero, non-
infinite) values of b. If Im (k)—+ «, S;(k, b) behaves
like exp [2b Im (k)], thys presenting the well-known
essential singularities for Im (k) — 4. In the
lower & plane, S;(k), b) is a meromorphic function,
with infinitely many poles; the larger the value of
|Re (k)|, the lower these poles are located in the
k plane. For &k — 0, b finite, and also for b — 0, &
finite, we have 8,(k, b) — 1, as shown later. There
can be no poles of S,(k, b) in the upper half-plane,
except on the imaginary axis. All these are well-
known general properties of finite range potentials.®

In Sec. 2 of this paper we discuss the asymptotic
behavior of the wavefunctions when b — «. In
Secs. 3-6 we discuss the distribution and displace-
ments in the complex k plane of the poles of S, (%, b)
as a function of the range b. Since Y{(k, b) is a
regular function of & (except at the origin), the
singularities of S;(k, b) will be poles due to zeros
in the denominator Y{" (k, b). Our general equation
for the poles will then be Y{"'(k, b) = 0.

2. ASYMPTOTIC COULOMB WAVEFUNCTIONS
FOR COMPLEX %
For |kb| > 1 the asymptotic (large r) I wave-
function for the Schrédinger equation with potential

(1) is

~ 1 ik(r—b)[ eikb(%kb)"l—)‘
) m% TA+1-n
e—ikb)\(_2ikb)—l—l+).]
TI+14 N
kb 3 —1-1-)
—3$k(r—b) e 7\(2'Lkb)
te [ TA+1-%
_ e—ikb(_Qikb)—H-)‘]}.
i+ 14N
If in (4) we just substitute b = r and keep only

the dominating terms we obtain the asymptotic
Coulomb wavefunction

1 [ o (26k0) 1
RO~ Ti+1-mn
ke (—21kr i

TA+1+ 7\)] ©)

+

@
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and consequently the Coulomb §; function

T4+ 142N
TA4+1-2»

However, this substitution is quite arbitrary, since
for |kb| > 1, (4) is valid for all » > b and the defi-
nition of 8; is independent of r. Putting » = b
in (4) implies in that we have made r and b tend
together to infinity, with r — b = 0. This is not
the case in our problem, where we have the solution
for a finite range potential whose range b is then
allowed to increase. We might as well keep r — b,
for instance, finite and nonzero. The two ways of
taking the limit may lead to different properties of
the resulting S, function.

So, let us keep r — b finite while r, b — .

If k& is real the exponentials appearing in (4)
are just oscillating functions and the limit b — «
will give, selecting the dominating terms,

ikr (2ikb)_l_,\
TC+1—N

ik __2-k ~1+\
— e -———-———-lf(l -Ii ?—l— )\):I , realk, (5"

which is again the asymptotic Coulomb wave-
function (put b = r inside the brackets), and
gives the usual Coulomb S; function. So, nothing
is different for the case k is real.

Let us now assume that Im (k) £ 0 in (4). Now,
there will be real exponentials, and, at least for
values of k& not in the neighborhood of poles of
T+ 1+ Nor T + 1 — A), we find, when
taking the limits r, b — «, the dominating terms
to be those containing positive exponents. Thus
we will have

m®~%&

89°(r) = (—2kr) ™™,

Ri() ~ I% [e

i )\(__2ikb)—l—1+>\e—2ikb
r¢+1+»

—ikr (—Zikb)-“)‘
- ) @

for Im (k) > 0 and

1] o @ikH™
Bi) ~ ["k TA+1-n

r¢+1-» @

for Im (k) < O with the possible exception of
isolated points for which T'(! 4+ 1 + ) and
T'(l + 1 — 1)) increase without limit.

None of these two formulas (6) and (7) for
Im (k) # O reproduces the Coulomb wavefunction.
One of them, Eq. (6), contains the Coulomb incoming

+ e
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wave, combined with a different outgoing part, the
other (7) contains the Coulomb outgoing wave
combined with a different incoming part. These
wavefunctions (6) and (7) or the corresponding
S; functions show the behavior we obtain if we
solve the problem for finite range b, then taking
larger and larger values of b. Perhaps this would
correspond more appropriately to a physical situ-
ation, where a truly infinite Coulomb potential
cannot really exist.

We can easily see that the expressions (6) and
(7) for the asymptotic wavefunctions do not allow
for poles in the corresponding S; function. Thus,
as b — o poles can only be located in points where
these expressions are not valid.

Let us return to (4). The position of the poles
of 8, will be determined by equating to zero the
coefficient of exp (—kr), that is, by

EFN2ED)TIT(I 4+ 1 + N
=(=D7r@+1-N. @®

Using this relation to evaluate the coefficient of
exp (-+1kr) in (4), we then obtain the fact that, near
a pole of 8,, the asymptotic wavefunction in the
limit b — o behaves like

pole 1) ar_ (2KkD)
B “’Ei{" TT+1-W
—ae] EFNQiED) T (—24kb) T ]}

te [ fi+1-» 1a+i1+nl @

If Im (k) > 0, Eq. (8) has solutions only for
points in the k& plane which tend to the poles of
'+ 14 A) asb — «. For Im (k) < 0 the poles
of 8, tend to the poles of I'(! 4+ 1 — A). Thus the
structure of the pole distribution for the S; function
obtained this way is different from that obtained
with formula (5). We now have the fact that, for an
attractive potential, there will be poles in both the
positive and negative imaginary axis, for

Im@®E = 0+ 1+

wheren = 0, 1, 2 --+ . For a repulsive potential,
the poles can only move to the origin in the k plane,
where the above formulas are not valid in general,
as we see later. We remind here that, in the usual
discussion of the Coulomb potential problem,* there
appear poles in the positive imaginary axis for the
attractive potential, and in the negative imaginary
axis for the repulsive potential. We must remark
that there is no different behavior concerning the

¢ H. M. Nussenzveig, Analytic Properties of Non-Relati-

vistic Scattering Amplitudes, Lecture Notes, Escuels Latino
americana de Fisica, Universidad de Mséxico, 1962,
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bound-state poles (those on the positive imaginary
axis).

3. THE LIMIT b —» 0

From (2) it is easy to see that when the range b
tends to zero with % noninfinite, S;(k, b) tends
to one. This follows immediately from the fact that
JFi(a7'; ¢;az) — 1 as z — 0 and that H{V (2)/H? (2)
goes to 1 when z — 0. Thus, when the range of
the potential tends to zero, there can be poles of
the S, function only for |k| — «.

We can now ask what happens in the variable kb.
To keep kb finite when b — 0 we must have k| — =,
but taking this limit |k| — « in (3) is equivalent
to make A — 0, or in other words, to reduce to
zero the strength of the potential. We expect that
S: goes to zero in this limit. In the Appendix we
show that this is in fact true.

Thus, there can be no poles in the finite kb plane
when b — 0, the poles are being pushed to infinity
when this limit is taken. To find how the poles
displace themselves, we can use well-known asymp-
totic expressions, valid for large kb, for the Hankel
and hypergeometric functions occurring in Y'{* (k, b).
The asymptotic formula for the confluent hyper-
geometric function is

Fia; i) = 1D (=)7L + 067)]
+ T e+ 06 10

We obtain after a lengthy but straightforward
calculation

YOk, b) ~ (2/xkb)? exp (—kb)[(21 + 1)!/1i7'Ek

X (2ikb) (1) 2K’ — poexp (2ikb)].  (11)
The equation for the poles is then
u exp (2tkb) = (—1)'2k%D, 12)
which has solutions
= {2n 4+ 1 + 3 + DIGn), (13)
yb — — o, with exp (—2yb) = 24°b, 13"

where n is a positive or negative integer, or zero.

This result is similar to the one obtained by
Nussenzveig' in the case of a rectangular well or
barrier and by Humblet® in a more general case.
It says that, in the limit of very short range or very
weak screened Coulomb potential, the poles tend
to yb — — o, approaching the asymptote lines

5 J. Humblet, Mém. Soc. Roy. Sci. Liége 12, No. 4, 70
(1952).
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zb = +£N(3w), where N is odd for I odd (even)
and N is even for [ even (0dd) in the case of attractive
(repulsive) potentials. Thus the odd I-wave poles
in the attractive and the even l-wave poles in the
repulsive potentials both tend to the lines zb = -1,
=37, +.. , while in the other cases the poles tend
to b = 0, £, --- . This is in fact a particular
example of a quite general property of weak poten-
tials.* This behavior is shown in the curves of
Secs. 5 and 6, where trajectories described by the
poles when b varies are drawn.

The asymptotic behavior of the numerator
Y#(k, b) when b — 0 is given by

Yi®(k, b) ~ (2/xkb)? exp (—ikb)[(2] 4 DV/1'k™
X (—2kb) " [(—1)'2%% — p exp (—2ikb)]  (14)
and then
8i(k, b) ~ —i/[2b(k — ko)] (15)

in the neighborhood of a pole k,. Then in the
plane kb the residues of the poles tend to —%7, and
in the k plane they increase as —%/2b when b — 0.
It is interesting to note that, for the residues, these
results do not depend on 1. Also Eq. (18’), which
determines how fast the poles are pushed to infinity,
does not depend on the particular pole (that is, on N)
neither on [. This means that the centrifugal barrier
at the origin has no effect in the strength of the
poles for a limiting short-range potential nor in
the speed with which they are sent away to infinity.
Since the centrifugal barriers are just equivalent
to a potential behaving like C/r* at the origin,
we can predict that, for this sort of potentials
whose range is made to approach zero, the S,
function will have the same pole structure as given
by (13), (13"), and (15), except that the asymptote
lines will be given by (13) with ! modified so as to
include the effect of the potential, that is Il + 1)
is substituted by I(I + 1) + C. We must notice
that, in this case of potentials behaving like C/r*
at the origin, we obtain different behavior of the
poles in the two cases where we reduce the strength
and where we reduce the range to zero.

4. THELIMIT b — «

When taking the limit b — « we have several

_[@ikD)N T+ 1 — N] + N—20k8) 7 exp (—2ikB)/T(U + 1 + V)],
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cases to consider. We may have % finite (nonzero)
and thus |kb| — <, or we may have £ — 0. In this
last case we may have kb finite or kb increasing to
infinity. Let us consider each of these possibilities
separately. This is essential, as the asymptotic
behavior of the functions involved are different
under these different conditions.

(a) We keep k finite, nonzero, and let b increase
without limit. Since {kb| — « and all other param-
eters are limited, we may use well-known asymptotic
expressions for the Hankel and hypergeometric
functions. We now show that the S, function tends
to limits which, in general, are different from the
usual Coulomb 8; function. The results here indi-
cated are in agreement with those of Sec. 2.

Writing Y (k, b) in the form

YiP(k, b) = {—ikb[H{,(kb) — tH{ (kb))
+ (U 4+ NHIDEDLF( 4 1+ N 20 + 2; —24kb)
+ (U4 1 = NHEDED),FA(l + \; 20 + 2; —2ikD),

(16)

we obtain, for |kb| > 1,

Y®(k, b) ~ (2/xkb)} exp (—1ikb)i'**

X {NF( 4+ 1+ 321+ 2; —26kb)
+ (0 4+ 1 = NuF(+ N 20 + 2; —2ikb)}
and

YOk, b) ~ (2/nkb)? exp (—ikb)i™*™*

X {(I 4+ 14+ M) Fi( — »; 21 + 2; 2ikb)
— M 41— £ 20 + 2; 26kD)).

an

(18)

We can prove that the asymptotic forms of the
Fi’s which occur in both expressions (17) and (18)
are such that the first one predominates over the
second when Im (k) > 0 and the second ,F,
dominates when Im (k) < 0. This dominance may
not be true for the isolated points where the domi-
nating ,F, happens to be zero (this will happen in
the poles and in the zeros of S;). In these cases we
have to keep the second dominating terms in the
expressions for Y and Y{®. The expression for
the S; function which is valid in all cases is

Sl(k) =

19
[(—2ikb)""/T( + 1 + N)] — M2k exp (2kb)/T(L + 1 — W] (19)
For Im (k) > 0 and for |[kb| > 1, S,(k, b) behaves like
Sk, b) ~ —N—2ikb)™" exp (—2ikb), Im (k) > 0 19)
b=
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in all points not in the neighborhood of the zeros
of the denominator in (19). Thus, S;(k, b) explodes
exponentially as b — o in the whole upper & plane.
On the other hand, for Im (k) < 0, except in the
neighborhood of zeros of the denominator in (19),
S:(k, b) behaves like

Sk, b) ~ N"(2ikb) exp (—24kb),
b=

Im (k) <0. (197

Thus, when b — =, S; tends to zero for every
finite k& in the lower k plane, with the possible
exception of isolated points.

Let us discuss the behavior of the poles of S;(k, b)
as b increases to infinity. For Im (k) > O the
exponential in the denominator of (19) will tend
to zero as b gets large, and the poles will then move
to the points where T'( + 1 - \) also gets large,
that is, to the points such that I + 1 4+ A = —n,
withn =0, 1, --- . For Im (k) < 0 the exponential
in the denominator in (19) increases with b, and
the poles must tend to the points for which
T{ 4+ 1 — \) is also large. Thus the poles in the
lower & plane will move to the points given by
l4+1—X= —n. Since A = iu/k, u being the sign
of the potential, we see that in the attractive case
(u = —1) there will be poles in both positive and
negative imaginary axis, while for a repulsive (u = 1)
potential in the limit b — « there will be no poles
with finite nonzero k. This is in agreement with what
has been said in Sec. 2. We should remark that (19)
still obeys the symmetry properties S,(k, b) =
Si(—k, b) and S%(k, b) = S,(—k*, b).

The residues of the bound-state poles are given by

' yb)> !
@'-1-=-DI@"+n

and they increase as b increases. The residues of
the poles in the negative imaginary axis for large b
values are given by

—1y*(2yb)* ™" exp (4yd)
vy — =Dl (—y + D’

and thus they tend to zero as b increases.

(b) Now, let us consider the case in which k goes
to zero while b — «, with kb being finite. In these
conditions the first parameter in ,F,(a; ¢; 2) is large,
while the second parameter and the variable are
limited. We must then use the asymptotic expres-
sions valid under these conditions.® We obtain for

y=Im(%) >0,

y=Im(k) <0,

¢ Bateman Manuscript Project, Higher Transcendental
Functions, (McGraw-Hill Book Company, Inc.,, New York,
1953), Vol. L., Chap. VI.
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k| < 1, |kb| finite,
Yk, b) =~ (21 + 1)! 7~ exp (—ikb)(2b) '
X exp [—i(l + DB + w)(Gm)]kb[HiLy (kD)
+ $H{,(kb)]{exp [2i(—2ub)}]
+ exp (3r/2 — 26[(—2ub)!]} + Hi¥y(kD)
X exp [i(1 + wn/4](2b) {exp [2i(—2ub)}]
+ exp lin/2 — 2i(—2ub)*1)). (20)

It is now easy to see that in both casesof p = %1,
the second part in the above expression dominates
over the first. This means that, in the conditions
studied here, we may simplify Y{"(k, b) to

Yk, b) ~ (21 + 1) exp (—2ikb)
X (Fi(l— \; 21 + 1;2i6B) Hi P, (kD),
The S; function will then be
Si(k, b) &~ —H{(kb)/H{ (kD). (22)

The result is that when & — o there will be
poles in the plane kb at the points given by the
roots H}}(kb) = 0. The residues of these poles
are not zero, since the roots of H}}(kb) and of
H 3} (kb) never coincide (they are symmetric with
respect to the origin). H;}}(kb) has roots only
for Im (kb) < 0 and H{}(kb) only for Im (kb) > 0.
For I = 0 there will be no such poles. For | = 1 we
have a pole at kb = —¢, for | = 2 there are poles
at kb = F§ — iv3/2, and so on. There will be 1
poles of this kind for a given I wave. For odd I values
one pole will be on the imaginary axis and the
(I — 1) remaining ones will be distributed symmetri-
cally with respect to this axis. For even I values
there will be no poles on the imaginary axis, since
H}}(kb) does not admit double roots. In the
k plane all these poles tend to the origin. This
pole structure does not depend on whether the
potential is attractive or repulsive. These coneclusions
are confirmed by the numerical calculations and
are shown clearly in figures of the next sections.
These poles are responsible for the essential singu-
larity of S; in the Coulomb case.

(¢) Only one possibility remains to be discussed
in this limit & —» «, that in which ¥ — 0 and
[kb] — «. We now have both the first param-
eter @ and the variable z in the functions ,F,(a; c; 2)
increase without limit. The asymptotic expressions
for the attractive and repulsive cases are different,
and also different expressions have to be used for
different regions of the complex plane.” We then

k| < 1. (21)

_'L. J. Blater, Confluent Hypergeometric Functions (Cam-
bridge University Press, New York, 1960), p. 85.



1212

go directly to the points we wish to demonstrate,
avoiding more general calculations which are not
absolutely necessary.

As we see in the next section, the behavior of
the poles in the attractive potential is already
completely described in terms of the cases previously
analyzed. We then specialize to the repulsive case.
We show that there exists an infinite number of
poles such that |k°b| is kept finite while & — 0.

We want to study the behavior of the S, function
in the right-hand side of the lower half-plane of
the variable k, that is, we have

—ir <arg (k) <0, 0 < arg (2kd) < ir.

In the denominator of the S, function enters two
hypergeometric functions,

F, = F(l+1—Xx;20 4+ 2;2kb)
and
F, = F,(I — \;21 4 1; 2{kb).
By using the appropriate asymptotic expressions (7),
we can prove, after a rather long but straight-

forward calculation, that kbF, and F, are of the
same order of magnitude in the limits considered,

Si(k, b)

k3b finite

This satisfies the symmetry properties known for
the S matrix, mentioned in Sec. 1.

With this result our problem reduces to the
search for the existence of zeros of F,(I — \;21 4 1;
27kb) in the conditions considered, that is, with
E— 0, b — o, t = 2kb/[4(x + )] finite,
0 < arg (i/k + %) < ir. We can then use the
appropriate asymptotic formula for ,F,, and equate
it to zero.

We have’

F, =~ exp (2tkb)(2ikb)' 121 + 1)
i3y Sgite
X [1 — @\ + 1)/ikb] Ak, b),  (26)
where

Ak, b)) = A+ D7 Pexp B+ N+ H/TU— N
+ O+ P exp(-E—21— 3
X exp [ir(l — N/TC+14+N (2D
and
E =@\ + D{idt — D) 4 log [¢t — (¢ — 1]}, (28)
Using the asymptotic limit
TG ~ 0% %" (large |2|)

- HZ,(kb) Fi(l + \;20 + 1; —2ikb)/[exp (—2ikb)H [ (kb) \Fo(I — \; 21 + 1;2ikb)].
b—rco
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as long as kb is a finite quantity, that is we have
O(kbF,/F,) = (k’b)}. Since F, and F, appear in
Y{*(k, b) in the combination

YV (k, b) = exp (—2ikb){skb[H \,(kb)

+ HD%EDIF, + 21 + DHEDF,},
and since

H2y(keb) /[H2y(kD) + iHPy(kb)] = ikb/1,

when (kb) — o, the term containing F, will domi-
nate over that containing F,.

A similar evaluation can be performed with the
terms contributing to Y{¥(k, b). We now take
the form

Y®(k, b) = exp (—26kb) { —ikb[H Z(kb)
— SHEOEDIF, + @1+ DHE,EDF,),  (24)

where F3 = ,F,(I + 1 — ;21 4 1; 2¢kb) and prove
that O(kbF,/F,) = (kb)?.

Now, since H,7}(kb) is larger than H,%}(kb)
—iH %} (kb) when |kb| — o, the term containing F,
dominates over the other, and the S, function
becomes

(23)

(25)

for the I' functions and noticing that A\ is large
[so that (A + %)M ~ M\*e!] we obtain
Ak, b) ~ @m) (-1’

X exp (—ixh — E)[1 + exp (2F — %im)]. (29)
Thus the necessary condition for the existence of
poles in the S; function is then

Re (E) = 0,

Im (E) = 3x/4 + mm,
We first notice that these equations determining
the poles are independent of I. We now look for
solutions of these equations such that y/z — 0

while z, ¥y — 0. In these conditions the system of
equations is

G + y/2)[(Gba")i G’ — D
+ log |(302)! — (32" — DY)

m integer.

— (1 + 4y/a)(3ba? G’ — D} =0,  (30)
@/2)[(3b2”) (b2 — 1)}
+ log [(3ba) — (3b2® — 1}]
+ GG + y/2)A + 4y/2)(Gba’)}
X (3bz® — 1)} = 3x/4 + mr. (31)
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As z — 0 the first term in (31) increases without
limit, unless 4bz” tends fast to one. In this case (31)
becomes simply

1bs® — 1)/z = 3n/4 + mx (32
which gives an explicit solution
zb = (20 + 3x/4 + mr (33)

for one of the coodinates of the poles. Taking (33)
into (30) we obtain

(34)

yb— —13.

Thus the result is that, for repulsive potentials, we
have an infinite number of poles which, as b increases,
tend to infinity in the kb plane, approaching asymp-
totically the line yb = —3}. The existence and
position of these poles are independent of the value
of the angular momentum. All this can be seen in
the curves of Sec. 6.

5. THE POLES OF THE S MATRIX FOR
ATTRACTIVE POTENTIALS

We have seen that (13) and (13”) show that for
increasing b the poles approach lines parallel to
the imaginary axis in the kb plane. For curves
with even [ values the poles approach the lines
zb = N(37), with N = 0, £2, %4, and so on.
For the odd waves the asymptotes are given by
the same formula, but with N = +1, 43, £5, and
so on. We label a pole by the number N that defines
the asymptote of its trajectory when b — 0.

From (13’) it can be shown that as b — 0 we
have d(yb)/d(log b) = %. This means that dividing b
by a given factor implies that all the poles go down
the same vertical distance in the plane kb. This
can easily be observed in Figs. 1, 3, and 5, where
the trajectories of the poles for the attractive s, p,
and d waves are shown respectively. Since Eq. (13')
is also wvalid for repulsive potentials, this behavior
can also be observed in the corresponding curves
for the repulsive case (Fig. 7).

As b increases, the poles move upwards in the kb
plane, and in the attractive case they turn so as
to run towards the imaginary axis.

(a) The s-wave poles

We first describe in detail the behavior of the
s-wave poles. There is a pole (N = 0) which moves
along the imaginary axis, from kb = —io to
kb = 4-io. The pair of poles (N = +2) coming
from the asymptotes zb = = reach the imaginary
axis in the point yb = —1.5774 for b = 3.4115.

1213

Im(ke)

Ix_1o

NeQ HEIT) .ao0y
¢ Nea

[ SO S R A 1

~000t
Nea

Fi1a. 1. Poles for the S matrix for s-wave scattering by a
screened attractive Coulomb potential of range b. The values
of b are shown on the curves. The trajectory N = 0 is always
on the imaginary axis. Each trajectory has a symmetric one
for negative values of Re(kb). After two symmetric poles
reach the imaginary axis as b increases, one moves upwards
and the other moves downwards along the imaginary axis.

All pairs of symmetric poles meet at the imaginary
axis; as b is further increased one pole goes up along
the axis towards yb = «, while the other moves
downwards to ybp = — . The poles N = o4
reach the imaginary axis in the point yb = 1.5227
for b = 8.9781. For N = 46 this happens for
yb = —1.5101 and b = 17.001.

The most distant (large |N|) poles reach the
imaginary axis for larger and larger values of b.
We now prove that as |[N| — o, the poles reach the
axis in points closer and closer to yb = —1.5.
The denominator of the 8; function for I = 0 is
YV (k, b) = (F.(i/k; 1; 2ikb). Poles on the imaginary
axis are determined by ,F,(1/y; 1; —2yb) = 0.
This gives y as a function of b. For the points in
which the poles leave the imaginary axis, we must
have db/dy = —(0F/dy)/(0F/3b) = 0, and thus
these points are determined by the simultaneous
solution of these two equations. We want to study
the distant poles, i.e., these which enter the axis
for large b. We can try a solution with y — 0, yb
finite. In these conditions the hypergeometric
functions can be expanded in terms of a series of
Bessel functions,

Fil/y; 1; —2y8) = exp (—yb)(JL{2(@ — )b}
+ @R2Y/6)y* 7, (20@ — b)), (35)
Thus for small y the “distant” poles must satisfy

Jo{2[2 — 9Bt} = 0. (36)
From (35) we obtain
0,F,/dy = exp (_yb)(%b)}

X (1 + 3op)J: {202 — 9bl}. (3D
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F1a. 2. Purely imaginary poles for s-wave scattering by an
attractive screened Coulomb potential. The points 4, B, C, D
show the values for which the poles reach the imaginary axis.
A', B, C', D’ correspond to bound states of zero binding
energy. The asymptotes Im (k) = 2/(|N| + 2) give the
binding energies of the Rydberg formula. The poles that tend
to Im (k) = — 2/|N| are not present in the usual analytic
extension of the Coulomb S matrix

Since J, and J, cannot be simultaneously zero,
we must then have yb = —3 as the only possibility
to satisfy simultaneously the two equations. This
is what we wanted to prove. All the poles (except the
pole N = 0) enter the imaginary axis for values
of yb between —1.5774 and —1.5. From (36) we
then obtain that the values of b for which the distant
poles enter the imaginary axis are approximately
given by the larger roots of J,2(2b + %)} = 0.
The pole N = 0 can be said to enter the imaginary
axis for yb = — .

When a pole crosses the origin and enters the
positive imaginary axis a new bound state is formed.
The values of b for which this happens can be
determined in the following way. For y — 0, b
finite we have

Fi(1/y; 1; —2yb)

~ Jo220)1 + yGHN. 2. (39)

Thus, new bound states arise whenever 2(2b)?
reaches a root of the Bessel function of order zero. b is
measured in units of the Bohr radius a, = h*/mZé’.

The displacement of the poles along the imaginary
axis can be better observed in Fig. 2, where Im (k)
is plotted against b. Only the purely imaginary
poles are represented.

For values of b corresponding to the vertices
A, B, C, D new poles reach the imaginary axis.
Every time one of these values is reached, two
new purely imaginary poles arise. This always
happens for a value of Im (k) such that 2/|N| <
Im (k) < 0. One of these poles moves downwards
along the imaginary axis and tends asymptotically
to the point Im (k) = —2/|N| as b — . The
‘twin” pole moves upwards, and as b — o« it

E. M. FERREIRA AND A. F. F. TEIXEIRA

approaches asymptotically the point Im (k) =
+2/(IN| + 2). Thus in the attractive Coulomb
potential limit the pole configuration in the &k plane
in the s-wave case is the following: there are poles
in the points of the positive imaginary axis, corre-
sponding to the usual bound states {[Im (k) =
2/(|N| + 2), [N} = 0, 1, 2 --.-] and in points of
the negative imaginary axis [given by Im (k) =
—~2/IN|, |[N| = 1, 2, ---]. We again remark that
this is not the same on the usual pole description
of the S, function for Coulomb potential, where
the poles in the negative imaginary axis are not
present.

It is interesting to note how the bound-state
poles tend to the points determined by the Rydberg
formula as the range b increases. According to (38)
new bound states (with zero binding energy) appear
for b = 0.74a,, 3.74a,, 9.33a,, 17.35a,, that is,
for values of the range close to the values of the
Bohr radius n’a,. As b increases from this value,
the binding energy tends to the maximum values,
given by Rydberg formula. In the first level (the
ground state, N = 0) the maximum is reached
rapidly: for b equal to 2a, the binding energy is
less than 0.5%, different from the limit value. Thus
this binding energy is not much affected by the
existence of a tail in the potential. The same is
true of the other bound states: if the range of the
potential is twice as large as the range necessary
to create the bound state, the binding energy and
the position of the two ‘‘twin” poles are almost
the same as if the tail were complete.

From (38), which is valid for finite b and small y,
we can see that (9F/8y)y-o # 0. This means that
the s-wave poles for attractive potential do not
enter the imaginary axis in the origin ¥ = 0. In
other words, the vertices A’, B’, C’, D’ of the
curves in Fig. 2 do not coincide with the points
A, B, C, D where bound states are formed. Com-
paring the equation Jo[2(2b + %)} = 0 which
determines the vertices for distant poles and the
equation J, J2(26)] = 0 which determines the
values of b for which the poles cross the origin,
we see that the two values of b tend to differ by
0.75 for the very distant poles.

(b) The p-wave poles

According to (13), for small values of b the
poles are close to the lines

Re (kb)) = N7 (N = =1, £3, £5, -- ).

As b increases the poles move towards the origin.
This is shown in Fig. 3, where the trajectories in
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Fra. 3. Trajectories of the poles for p-wave scattering by
attractive potentials. The values of the range b are indicated
on the curves. All trajectories enter the imaginary axis at the
origin, and then run upwards and downwards along the
imaginary axis.

the kb plane are drawn. For certain values of b
two symmetric poles reach the imaginary axis at
the origin.

With increasing b one pole moves upwards along
the positive imaginary axis to yb = -+, which
other moves downwards to yb = — . That the
entry point of all the poles is at the origin can be
proved in the following way. For small y the pole
defining equation ¥V (%, b) = 0 becomes (if I # 0),

Jal2@0)Y + v, b)JTaal220) =0,  (39)
where
p(l, b)

= (I + D@’ — 1 +4p)@Eh/[12(21 — D].  (40)

Thus the values of b for which the poles pass the
origin are given by the roots of

Ja2@20)Y = 0.

(41)

Fra. 4. Purely imaginary poles for
Zj):-wave scattering by attractive potentials.
he points A, B, C give the values of b for
which the poies reach the origin and new
bound states are formed. As b — « the
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Due to the square dependence on y, we have that
in that points also (3Y{’(k, b)/8y)y~oc = 0. This
means that the origin is also the point in which
the trajectory enter the imaginary axis. Clearly
these results are valid for all I 5 0. '

Call b, a solution of J4,[2(20)}] = 0. Since p(l, b)
is a positive definite quantity and since

Ju[22h)Y - —[21/@b)H(b — bu)J2r4a 22001,

we can conclude that the curves y = y(b) defined
by (39) have, for small y, concavities directed
towards the large values of b. Clearly these results
are valid for all 7 = 0. All this can be better seen
in Fig. 4, where Im (k) is plotted against b, and
the purely imaginary poles are indicated. Near
the points where the curves y = y(b) cross the b
axis, they are symmetric with respect to y (due
to the square dependence mentioned above). Thus
the vertices coincide with the axis,

The lower parts of the curves in Fig. 4 present
plateaux which all occur in the neighborhood of
kb = —q. This point has the character of a *‘sink,”
attracting the poles: large variation in the value
of b is necessary to remove 8 pole from the neighbor-
hood of this point of the kb plane. All the poles are
“attracted” by this point. For b large enough, we
can say that almost always there will be a pole
around kb = —i. This is the pole corresponding
to the solution of H{})(kb) = 0, as found in Sec. 4b.

The bound-state poles again tend rapidly to the
Rydberg values Im (k) = 2/(|N| + 3) as b increases.
Unlike the s-wave case, the “twin’’ poles tend to
symmetric points Im (&) = —2/(|N| + 3).

(c) The d-wave poles

We have here a few complications as compared
to the previous cases.

bound-state poles tend to the values of
Im (k) corresponding to the binding
energies given by Rydberg formula. In the
Coulomb limit there are symmetric poles
in the negative imaginary axis.
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F1q. 5. d-wave poles for attractive potentials. As b increases
the complex poles move towards the origin, and then follow the
imaginary axis. Those which run along the negative imaginary
axis pass again to the complex plane, describing ‘“semicirles,”’
and turning back to the imaginary axis. When b — o there
will be poles on the imaginary axis and at the points

= 34/3 — 3i. See text for detailed description.

According to (13), for small b the poles are close
to lines zb = iNw, with N = 0, &2, +4, etc.
For increasing b the complex poles (N = 0) move
in the complex plane (see Fig. 5) and reach the
origin in pairs, for values of b given by (41).

While one of the two poles |N| = 2 moves along
the positive imaginary axis to yb = «, the other
moves downwards along the negative imaginary
axis. In the meantime the pole N = 0 is climbing
up the negative imaginary axis. For b = 7.54 the
two poles meet each other in the point yb = —1.08.
As b is further increased, they leave the imaginary
axis and pass to the complex plane, one for each
side, symmetrically. The symmetry of the S,
function is thus not destroyed. The two poles
describe two * semicircles,” and join again in the
imaginary axis in the point yb = —2.35 forb = 13.6.
Now, one of them chooses to go down the imaginary
axis, running to yb = — ®, y = —}, as b increases.
The other one (we cannot tell which one) goes up
the imaginary axis, traveling towards the origin.
In the meantime, the pair of poles with |[N| = 4
has arrived at the origin, and decided that one of
them would go to yb = + o (y = +%) and the
other would travel down the imaginary axis. When
b = 15.6 this pole reaches the point yb = —1.04,
and there it meets the pole which was just going
up the imaginary axis after having described the
semicircles already described. Since these two poles
meet there for the same value of b, they can pass
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symmetrically to the complex plane without de-
stroying the right-left symmetry of the S, function.
They do it, describing semicircles in the complex
plane. The process is thus repeated continuously.

It can be remarked that the poles, when describing
the semicircles, are very much slowed down when
near the points kb = F1v3 — 2. This effect is
more and more important as [N| becomes larger.
This is analogous to what happened with the point
kb = —7 in the p-wave case, and we can say that
as b — o, there will always be found a pole in
those points. This is in agreement with the results
obtained in Sec. 4b.

In Fig. 6 this rather complicated situation can
be observed in a different way. There we plot Im (k)
against b. The poles on the imaginary axis are
represented by full lines, the complex poles by
dotted lines. We have an infinite number of valid
labeling of certain lines, since after two poles join
each other we cannot tell which is which. Two of
the simplest descriptions are attempted in Fig. 6.
In one of them the pole N = 0 never goes to infinity:
it is always describing semicircles, taking charge
of meeting other poles to keep symmetry of the
S, function. As b — o« it tends to be retained by one
of the two points which are the roots of H{}}(kb) = 0.
In the other interpretation each pole N £ 0 describes
semicireles twice: one time symmetrically to a pole
of smaller |N|, another time to the next larger one.
In this case the N = 0 describes only one semicircle.

6. POLES FOR REPULSIVE POTENTIALS

For repulsive potentials the behavior of the poles
is rather simple. In Fig. 7 are drawn the trajectories
of the s-, p-, and d-wave poles in the kb plane.

For small values of b the trajectories are close
to the vertical lines 2b = 3N, in agreement with
(13’). As b increases an infinite number of poles

Fra. 6. Poles of the S-matrix for d-wave scattering by an
attractive potential. In full lines are represented the poles on
the imaginary axis, in dotted lines the imaginary part of the
complex poles.
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turn towards large values of Re (kb), approaching
asymptotically the line yp = —0.5. In all of them
b — 2 as b — o. They form groups, consisting
of one trajectory for each ! value which go together
to infinity. Each group tending to keep a distance
7 (in the kb plane) from the next one. All this is
in agreement with the results of item ¢ in Sec. 4.

For each value of [ there are [ trajectories (counting
those in both left- and right-hand side planes) with
an special behavior: they remain in the finite kb plane
as b — o, tending asymptotically to the points
which are the roots of H,}}(kb) 0. These
solutions have been mentioned in Sec. 4b, and are
clearly shown in Fig. 7. Only in these trajectories
do the several waves differ from each other when b
is large.

In the & plane all the poles go asymptotically to
the origin as b — «. Those which correspond to the
trajectories which go to infinity in the kb plane,
approach the origin taking the = axis as a tangent,
since for them y/x — 0. The [ trajectories which end
in points with finite |kb] are the only ones which do
not take the x axis as a tangent direction.

APPENDIX 1. PROOF THAT S:(kb) —» 1 WHEN
b — 0 WITH kb FINITE

Taking the functional relation among confluent
hypergeometric functions

Fila+1;2a+1;2) + Fi(a;2a + 1;2)
= 2,F\(a; 2a;2)
multiplying by

e~ o ot ke o e e e e et e e e Sz

e ——— e e s e N e e
-

(32) Fila + 1;2a + 2;2)
= (@ + DLFie + 1;20 + 1;2)
— 1Fi(a; 2a + 1;2)]
and rearranging terms we obtain

_Fila+1;2a +152)
Ji(a; 2a 4 1;2)

_ (G2, Fi(a+1;2a+2;2) + (2a+ 1) ,F:(a;2052)
39 . Fila+1;2a4+2;2) — (2a+ 1) ,Fi(a;2a;2)

The convenience of this is that we obtained a relation
between the two F’s that appear in S,;(k, b; A = 0)
(put @ = I, z = —2¢kb) and functions of the type
F1(p; 2p; z) which can be expressed in terms of
Bessel functions. We obtain

_1File+1;2a 4+ 1;2)
Fi(a;2a 4+ 1;2)
Jasi(312) + iJ.3(312)

Josy(3i2) — iJ,—4(312)’
which can also be written

_1F@a+1;2a 4+ 1;2)
Fie;2a 4+ 1;2)

_ [Hay(hie) +iH 2y (hi) )+ (H.3(ia) +4H 2y (i)
(Havy(3i2) —iH . 2y(302) ]+ [H. Dy (312) —H 2y (3iz))
which is enough to prove that S;(k, b) — 1 when
A — 0. Since this corresponds to |k| — «, it also
implies in that b — 0, since |kb| is supposed to be
kept finite.

(A1)
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In sufficiently nonlinear field theories there are extended objects whose number is strictly conserved
because of continuity of the underlying field as a function of space. We call these kinks. Kinks provide a
covariant description of extended but indestructible particles. We give the properties the field theory
must possess in order for kinks to exist, and the circumstances under which kinks can have spin 3.

THE strict conservation laws of elementary par-
ticle physics correspond to exact symmetries of
the underlying quantum field. In some cases the
symmetries have an obvious universal significance,
and the correspondence is an especially fruitful one,
such as for angular momentum and charge, under-
stood in terms of Lorentz and gauge invariance. In
other cases the correspondence serves as little more
than a convenient transeription of our experimental
knowledge. The three conserved fermion numbers 4,
N,, N, (atomic or baryon number, electron number,
and muon number) are of this more mysterious kind.
The gauge transformations they generate may have
no corresponding gauge field.

In classical particle mechanics, the conservation
of the number of particles is different from other
conservation laws. There, particle conservation is a
consequence of the continuity of the particle tra-
jectories, and is thus valid in a much wider variety
of circumstances than other conservation laws.

In sufficiently nonlinear field theories, there are
also objects whose number is strictly conserved
because of continuity, (a continuity, however, of the
basic fields rather than of trajectories). We call these
conserved objects kinks, and seek properties that
the underlying field must possess for kinks to exist
and to possess half-integer spin and Fermi-Dirac
statistics.

Kinks provide a description of particles with an
internal structure, distributed over a finite volume
rather than concentrated at one point. Many at-
tempts at such a description within nonlinear field
theory rely on a tendency of the field to clot or
clump as a result of self-interactions, a nonlinear
dynamical process. Such theories of particles, how-
ever, do not seem to account for the conservation

* This work was supported by the National Science
Foundation. I am also grateful to Tougaloo College for the
hospitality afforded me during part of this work. .

t Young Men’s Philanthropic League Professor of Physics.

of certain particle numbers, which are remarkably
exact empirical conservation laws. Given enough
energy in such theories, one clump can eventually
become two, and there is no discontinuity dividing
the one from the two. Not so with kinks.

The simplest example of a kink was already noted
by Skyrme' in a one-dimensional model arising in
his nonlinear theory of strong interactions. A three-
dimensional kink occurs in general relativity,® and
Skyrme’s one-dimensional theory was rediscovered
in the course of studying this gravitational kink.
Skyrme’s one-dimensional theory arose yet again
in the work of Enz,® who regarded it as a field theory
of spin waves, rather than isospin waves. Skyrme
has also investigated a three-dimensional kink.

To avoid misunderstanding, I explicitly abjure
two heresies:

The topological heresy. In this theory, particles
are not topological deformities of space-time. To
be sure, kinks are topological in some sense. But
the kinks treated here have nothing to do with any
topological deformity of space-time. On the other
hand, kinks still occur and indeed in greater variety,
if there are admitted topological space-time de-
formities.

The quantum heresy. This is not a classical theory
of quantum effects. To be sure, kinks are “quantized”
in some sense: they are discrete in number. But
their behavior exhibits no trace of quantum me-
chanics when it is described in a completely classical
field theory. On the other hand, kinks still occur
if complementarity is explicitly taken into account
and the field is treated quantum mechanically; then,
of course, they exhibit the usual quantum effects.

1T, H. R. Skyrme, Proc. Roy. Soc. (London) A 252, 236
(1959). For subsequent work of Skyrme see Nucl. Phys. 31,
556 (1962). I am indebted to Julio Rubinstein for these
references, and for frequent discussions.

2 D. Finkelstein and C. W. Misner, Ann, Phys. (N. Y.) 6,
230 (1959). General critena for the existence and spin of kinks
are stated here.

3V: Enz, Phys. Rev. 131, 19392 (1963).
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1. CLASSICAL FIELDS

1. First, we required some concepts concerning
a classical field ¢(x). At each point z of space—time
the field assumes values ¢ forming an n-dimensional
“field manifold” ®. The value of the field ¢ may be
represented by n real numbers ¢, forming a coor-
dinate system on ® We do not assume that one
coordinate system ¢, is able to cover the entire
field manifold ®; this assumption would restrict us
to theories that are trivial from the point of view
of the topological considerations presented here.
On the other hand, we do assume that the space-time
variable x ranges over the four-dimensional number
space R* = X.

What is important here is the topology of the
dependent (field) variable, not the independent
(space-time) variable.

In most field theories treated in the literature, ®
is assumed to be not merely a manifold but also
a vector space. Whenever we use perturbation theory
and expand about one point (the “origin’’) of &,
we thereby effectively replace & by a vector space,
the tangent space to & at the origin. Thus the
global structure of & is actually relatively unex-
plored at present and cannot be explored by per-
turbation methods. The properties of fields we are
concerned with here depend entirely on the global
structure of &,

2. We suppose that the classical field equations
define a continuous evolution ¢(z) = ¢(x, ) of the
field starting from any sufficiently differentiable ini-
tial values ¢(x, 0), ¢(x, 0), -+ - of the field and enough
of its derivatives at time ¢ = 0. The derivatives
o(x, 0) are objects of the differential geometry on
the manifold & and define tangent vectors to the
& manifold at ¢(z, 0).

3. Boundary conditions are essential for the con-
servation laws we are dealing with, since they are for
the more familiar ones, but these boundary condi-
tions can be relatively weak. We suppose all physical
fields p(x) approach some fixed value ¢, as |x| — .
Other boundary conditions would also serve our
purpose, which is to prevent the escape of the kink
to infinity, resulting in an apparent nonconservation.

4. In calling ¢ a classical field we also mean to
imply that ¢ has a single-valued law of transforma-
tion under the Poincaré group. Indeed, a main goal
of the present work is to ascertain which classical
fields can give rise to spin, in the sense of a double-
valued law of rotation, when the canonical quantiza-
tion is performed.
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IL. PARTICLE NUMBERS

1. We wish now to define homotopic conservation
laws. By way of prelude we go back to the particle
number of classical mechanics.

If Q" is the configuration space of » particles, then
the configuration space of an unspecified number
of particles is the union

¢=Ue.

In this space the particle number n is a nontrivial
dynamical variable, i.e., nonconstant with values
0, 1, -+ in the corresponding regions of Q. How-
ever, the configuration space @ is disconnected,
and there is no continuous curve that joins a point
of @ to one with a different number of particles.
In particular, a trajectory, assumed continuous, can-
not pass from one value of n to another.

This re-expression of the trivial fact that n does
not change in the usual classical mechanics is in-
tended to alert us to the possibility and the signifi-
cance of a disconnected configuration space. When-
ever the configuration space @ admits a resolution
Q = U Q. into components @, as in the above ex-
ample, there is present a strong conservation law,
independent of symmetries of the classical theory,
and dependent only on continuity.

2. In casting classical field theory as Lagrangian
theory, we employ as configuration space Q a func-
tion space whose points are functions ¢(x) represent-
ing possible fields, We are therefore forced to study
the connectivity of a function space. The tool for
this is homotopy theory. We designate the space of
continuous fields by ®%, giving the domain X of
the field (three-dimensional space) and the range
® of the field (the ¢ manifold of Sec. I.1). Within
3" we define a subset & (p,) of fields obeying the
boundary conditions ¢(x) — ¢, as |x| — «. It is
this subset we take as configuration space Q. The
question now is whether @ = &%(¢,) is connected,
that is, whether it is possible to find a path, i.e., a
continuous function ¢(x, &) (0 < « < 1), “joining”
any two points ¢,(%), ¢.(x) of Q. Inasmuch as our
purpose is to deduce conservation laws, we require
¢(x, a) to obey the continuity and boundary condi-
tions of a possible evolution ¢(x, £), namely:

(a) o(x, a) is continuous in the joint variables
&, ).

(b) Foralle,0 < a <1, (X, a) > ¢y a5 2] — .

(C) S"(x: 0) = ¢l(x)l ¢(x7 1) = ¢2(X).

If such a function ¢(x, a) exists, then ¢,(x) and
¢2(x) are homotopic, written ¢, ~ ¢,. The function
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(%, @) is called a homotopy. Evidently ¢, ~ ¢, means
that in a sense ¢; and ¢, can be joined by “curves” in
the configuration space @. Homotopy is an equiv-
alence relation; its equivalence classes are called
homotopy classes. We write = hom ¢(x) for the
class containing ¢(x). The homotopy classes are
analogous to the connected components @, in the
decomposition @ = \JQ. given before for the
classical configuration space of an unspecified num-
ber of particles.

3. The decompositions into connected components
of the phase space and of the space of paths of the
physical system are similar to that of the configura-
tion space, there being one-to-one correspondences
between the homotopy classes of each of these
spaces. To see this in the case of the phase space,
it is helpful to represent points of the phase space
as couples [¢.(X), ¢.(x)] of fields and their velocities
(time derivative), recalling that the ¢.(r) belong
to a linear vector space. In the case of the paths
o(x, 1), it is important that no boundary conditions
are imposed in {, although there are in x. Then,
it is easy to make a homotopy of every path ¢(x, ¢)
to an associated ‘“‘constant path” ¢'(x, t) = ¢(x, 0)
again reducing the problem of classification to that
of the configuration space.

4. A dynamical variable f that depends only on
the homotopy class of ¢(x) will be called a homotopy
variable.

5. Let o,(x) designate the constant field ¢o(X) = ¢o.
If another field ¢(x) is not homotopic to ¢,(x), we
say that there is a kink in ¢(x).

6. Now, let us see how to count kinks. Heuristically
speaking, the number of kinks in ¢(x) is the number
of times that ¢ winds about & as x ranges over X.

The homotopy classes of ® (p,) form a group
in a natural way. Let us define the composition @,

771@"12 = Nz,

as follows. By a homotopy, if necessary, we may
construct a representative field ¢,(x) of 5, which
takes on the value ¢, not only for |x| — = but also
for the half-space z; > 0, where z; is the third
component of x:

¢1(x) = @o» z3 = 0.

Similarly, we may construct a representative ¢,(x)
of 9, such that

:(X) = o, z; < 0.
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We take the ‘“‘sum” of the two classes to be the
class 7, containing

z; < 0.

z; > 0.

es(X) = (%),
= 992(x)1

Briefly, we push the nontrivial parts of 5, and 7,
to opposite sides of the plane z, = 0 and then sew
them together at this plane. We will adopt the
notation w3(®, ¢,) or occasionally r;(®) for the group
whose elements are the homotopy classes of ®*(¢,)
and whose composition is defined above. 73(®, @)
is isomorphic to what is usually called the third
homotopy group of the space ®. The subscript 3
on my(®) reminds us that the variable x ranges over
a 3-cell. If instead x varies over an n-cell with bound-
ary value ¢, imposed on the surface of the n-cell, we
obtain the group =,(®). This group would occur if
we dealt with kinks in a field of n(rather than 3)-
dimensional space. The most familiar case isn = 1,
corresponding to a one-dimensional field theory:
7(®) is called the Poincaré or fundamental group
of the space &. Its elements are homotopy classes
of mappings ¢ = ¢(z) with ¢(—®) = ¢(+ ).
This mapping is evidently a closed path or (for
brevity) a loop in & The homotopic conservation
laws depend on the structure of the group m5(®, ¢,).
If m3(®, @,) is the group « of the integers, then
kinks add like particles when they are juxtaposed,
the group generators corresponding to one kink
(or antikink, as preferred). It is readily seen that
if ¢(x) describes one kink then ¢(—x) describes one
antikink, the inverse to ¢(x) with respect to the
group operation (P. We shall later take up several
examples in which this group may be computed,
but first we establish its relevance to quantum
physics.

IIT. QUANTUM FIELDS

1. We now consider the quantum field theory.
The operators representing dynamical variables are
supposed to act on functionals ¥[p(x)], which as-
sociate a complex number or “amplitude’” with each
classical field function ¢(x). The dynamical variables
F of the classical field theory that do not involve
the time derivatives of the field are represented in
the quantum field theory by multiplication, as is
usual:

Fle] : ¥[e] = Flel¥[e].

2. Let f be any homotopy variable of the field ¢
(Sec. I1.4). Then
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df/dt = 0

holds both in the classical field theory and in the
canonical quantum field theory.

The classical part of the theorem has already been
made clear. For the quantum part, we suppose that
the evolution of the system is given by an integral
over histories of the type introduced by Feynman:

wlolx, 0] = [ o (GSEDEle(x, O] d [el).

Here, the integration is over all continuous histories
beginning with the initial configuration ¢(x, 0) and
ending with the final configuration ¢(x, t). Sle] is
the classical action for the history ¢, and ufe] is a
megsure. Consider a wave functional ¥ at time O
“belonging” to one of the homotopy classes of
®%(p,), say that of ¢,(x). That is, suppose only
fields homotopic to ¢, have nonzero amplitude:

Tole(x, 0] =0 or ox,0) ~ ¢

The contribution to ¥,[¢(x, £)] arises from an integral
over continuous histories leading from ¢(x, 0) to
¢(x, t). However, there are no such histories unless
¢(x, 0) ~ ¢,. Therefore

q’[‘p(xv t)] = O or ‘P(x) t) ~ ¢

That is, the final wave functional belongs to the
same homotopy class as the original. Define the
dynamical variable Clo(x) ~ ¢, (x)] to be 1 if
the indicated homotopy is valid, 0 if not. The
dynamical variable C is the characteristic functional
of the homotopy class ¢, (z). From what we have said,
it follows that if C¥ = AV holds at ¢t = O\ = 0, 1)
then it holds at any later time with the same A.
Therefore

dC/dt = 0.

The homotopy variable f is a linear combination
of such characteristic functionals and therefore we
have the conservation law

df/dt = 0.

Evidently this result depends essentially on the
continuity of the histories over which this integral
is taken.

The conservation laws for these homotopy var-
iables form the homotopic conservation laws of the
field theory. In the simplest cases there is either
no significant homotopic law, or else the conserved
quantity is an integer N = 0, &1, .-, or possibly
an integer modulo 2, depending on the way in
which kinks combine.
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IV. EXAMPLES OF HOMOTOPY CONSERVATION
LAWS

In the following examples, no proofs of topological
theorems are given. Only the needed results, taken
from Steenrod or Hu,* are mentioned.

1. Vector fields: & = R»

There is no significant homotopic conservation
law for linear field theories. Indeed, if & is a linear
vector space, then x3(®, ¢,) = 1, the group of one
element, and the homotopic dynamical variables
reduce to f = const.

2, Unit 3-vector field: & = S2

If ¢ is a unit vector field with three components,
© = (o1, @2 @3), ¢1 + ¢; + ¢5 = 1, then @ is the
2-dimensional sphere (surface) S°. Then the topolog-
ical result needed (cf. Table I) is*

73(S) = o,

the infinite cyclic group. Therefore, there is a single
homotopic variable N = 0, &1, £2, --- in terms
of which all others can be expressed and which
combines additively under the group operation @.
We call N the homotopic number.

In this example it is possible to visualize the con~
served structure such that the homotopic number
counts. We first use three Pauli matrices p,, p, ps to

TABLE 1. 7,(8™). The entry p designates the additive group
of integers modulo p; «, the additive group of integers;
blanks, the group with one element (p = 1). The groups
7a(8™), way1 (S™) are required in the kink and spin analysis of a
field theory in n-dimensional space with a field variable be-
longing to an m-dimensional sphere 8™, as for example to
8U, = 8¢ For sufficiently large n, m»,..{(S*) becomes a function
of r alone (independent of n), and the asterisk indicates that
this limiting value has been achieved. The other limiting
values for » < 8 are #(87) = 1% 7(85) = 2% =1(8%)
= 240* 75(S") = 2 @ 2*. This information is taken from
Hu (see Ref. 4).

m
n 1 2 3 4 5 6 7 8
1 =
2 1 ®
3 1 ® ©
4 1 2% 2% ©
5 1 2 2 2 ©
6 1 12 12 2 2 @
7 1 2 2 o@P12 2 2 @
8 1 2 2 22 24* 2 2 =
9 1 3 3 22 2 24 2 3

+ All the results of topology needed for the present work
can be found in N. E. Steenrod, Theory of Fibre Bundles
(Princeton University Press, Princeton, N. J., 1951), or 8. Hu,
Homotopy Theory (Academic Press Inc., New York, 1959). It
is a pleasure to acknowledge the benefit of frequent discussions
of these problems with C. W. Misner.
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supply space with a point at infinity through the
transformation

x— (prx+ 9)(prx —9)7 @

associating with each finite x a unitary 2 X 2
matrix and with « the matrix 1. This transforma-
tion is akin to the stereographic projection of x-space
onto a 3-sphere S°, the complex unitary 2 X 2
matric group SU, having the same topology as §8°.
The operator « is a spin-l representation of a
rotation about a radial axis passing through x. The
angle of rotation varies from 0 at [x| = « to 2r
at x = 0. The second column of the matrix u is
redundant. We obtain a simpler stereographic co-
ordinate by taking the first column of u setting

v=uf,

where T = (}). The spinor v evidently ranges over
8 since v = (¢1%), @® + b* + & + 4&° = 1, with
v = (;) corresponding to X = « and v = —()
to x = 0. We substitute » for x as independent
variable. A ¢ field with one kink is now a unit
3-vector depending on », and may be defined by
the important correspondence

o = v v =) @

equivalent to the Hopf mapping* of S* into S
A sort of spatial reflection of ¢,(»),

1) = ¢1(”h)

[v* = Hermitian adjoint of v, resulting from x — —x
in (1)] defines a field with one antikink.

3. A rotator field: ® = P3

The three-dimensional projective space P? is de-
fined as the space of rays in R*, i.e., a point of P*
is the set of all multiples of some nonzero vector
in R*. P? occurs as the range ® of the field variable
in some field theories. A “rotator” field, whose field
variable is an element of SO(3, R) (the rotation
group in three dimensions) is an example, since
SO(3, R) ~ P°. Because® m3(P°) = o, there is a
single nontrivial homotopic number. The kink in
this field is best described after the next example.

4. A unit 4-vector field: & = §3

The three-sphere S° is the covering space of the
projective sphere P® of the previous example, and
73(8%) = = (Table 1). S° is the range of the field
variable in a theory of strong interactions of Skyrme'
which suggests that the fundamental variable is not
an isovector = = (#', #°, «°) but an element II
of SU,, to which an isovector = can be related
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according to

I = exp (im-1x) 3)

for II sufficiently close to 1. Here = is the usual
isovector operator (7', 7°, 7°) generating the algebra
of infinitesimal spin-} rotation operators. Thus,
Skyrme’s theory, in addition to implying multipion
interactions because of the dynamical nonlinearity,
implies the existence of a strictly conserved homo-
topic quantity because of the topological non-
linearity. The class of unit homotopic number is
represented in the stereographic coordinates (1) by
the identity mapping

I =) = u.

With this result we return to Example 3. A rotator
field ¢,(») of unit homotopic number can be con-
structed from II,(v). Let D(I) be the spin 1 rep-
resentation of the group SU.,, defined by

D)= = O=I1"".
Then
(@) = D[L@)].
S. General Relativity?

Let us postpone the consideration of topologically
nontrivial space-times and continue to describe
space-time by four coordinates z* ranging over R*,
with the boundary conditions

Gur = Vs @) + @) + (@) > @

imposed on a distant cylinder. The coordinate z°
is supposed to be timelike on this distant cylinder;
indeed we take

Y. = diag (1, —1, —1, —1).

The previous discussion of conservation of homo-
topic quantities in classical field theories can now
be applied, provided we replace the concept of time
by the coordinate x° throughout. The conserved
quantity is associated with a cross section z° = const
of space-time; this cross section is not in general
spacelike throughout, and in general there is no
cross section which is spacelike throughout. The
field variable ¢ is now a symmetric tensor g,, of
signature +1-3, and the space ® of these tensors
has known homotopy groups. In particular*

73(P) = o,

Therefore, there is again just one conserved homo-
topic number, called metricity in an earlier work.”
The heuristic argument concerning the definition
and the conservation of these homotopic quantities
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in quantum field theory is somewhat less than con-
vincing for this case, because the quantization
process is not at all understood when the direction
of time is as tangled as it is in most of the metrical
universes introduced in this computation. For ex-
ample, the field of time-directions in a gravitational
kink is shown in Ref. 2.

6. Displacement field

Suppose a continuous medium undergoes a con-
tinuous differentiable deformation x — x’ = £(x),
which can be regarded as an idealized crystal lattice
deformation. Then, at each point, x is defined a
Jacobian matrix ¢(z) = 8x’/9x belonging to GL(3, R).
We suppose ¢(x) — 1 as x — «. Are there kinks
in the field ¢? We are led to seek w3[GL(3, R)].
The polar factorization

¢ = pw
expresses ¢ in terms of a real positive definite

symmetric p and a real orthogonal w, defining a
homeomomorphism

GLBR) ~ {p} ® 0.
The exponential form
p=2¢

defines a homeomorphism of {p} onto the real sym-
metric matrices {¢}, which form a vector space and
may be discarded. Thus

7[GLE3, B)] = m(0s) = .

There exists one kind of kink in the field ¢. This
analysis does not take into account the integrability
conditions obeyed by ¢, which in principle makes a
still finer analysis possible. If f(x) is required to
possess a continuous inverse (noninterpenetrability)
then the number of kinks must be 0 or 1.

V. SPIN AND DOUBLE VALUEDNESS

1. The operation W of a continuous rotation
through 2 will be called spin parity. W appears
to return every physical variable to its original value
and yet W changes the sign of the state (wavefunc-
tion) of some systems. This spin double valuedness
must cause anguish in any physicist, who is choosing
a candidate for a truly fundamental field. Geomet-
rical type arguments generally lead to tensorial or at
any rate single-valued fields with W = +1, such
as the metric tensor, the affinity, or the electro-
magnetic vector potential. On the other hand, there
are such algebraic arguments as the facts that a
vector can be formed from a spinor field but not
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conversely, suggesting that the fundamental field
have a built-in double-valuedness with W = —1.
Some physicists have followed the ‘“‘geometric”’ path,
others the “algebraic”.

2. Here, we show that certain appropriately non-
linear but single-valued fields ¢(x) admit double-
valued but continuous wave-functionals ¥[e(X)]
that have transformation properties belonging to
W = —1. We shall inspect each of the kinks we
have mentioned to see whether it admits odd-spin
parity in this way. We shall also see examples of
fields which do not admit kinks but still admit
structures of odd-spin parity. The connection be-
tween spin partity and statistics are discussed in
a later paper.

3. The tool for the study of multivaluedness is the
homotopy theory, since a multivalued funection on a
configuration space @ is one whose value depends
not merely on a point ¢ in @ but also on how that
point is arrived at, and therefore on a path in @
with homotopic paths being assigned the same value.

4. By a multivalued wavefunction we really mean
a function on the universal covering space of the
configuration space, whose definition we will now
recall. If Q is the configuration space, its (universal)
covering space is represented by choosing in each
connected component ¢" of @ a base point z; and
considering paths z(s), 0 < s < 1, starting at a
base point

z(0) = x5.

There is an equvalence relation ~ defined between
such paths obtained when two paths are homotopic
with end points fixed during the homotopy. The
resulting equivalence classes each consist of paths
all having a common end point z(1), but there
may be more than one class for a given end point.
Each class is a point of the unmiversal covering
space CQ, and we will write Cz for the set of points
of CQ associated with the end point z in Q. Cx is
said to cover z. The class containing the path z(s)
is written {z(s)}. Inverse to the covering corre-
spondence C is the natural projection p that maps
CQ onto @ by associating with each curve z(s) in
Q representing a point of CQ its end point z(1);
p(y) = z for y in Cz. The natural projection turns
dynamical variables f that are functions of ¢ into
functions Cf on the covering space CQ through

Cf(p) = {(g) forp in Cq.

In the following we ‘do not distinguish between f
and Cf related in this manner.
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5. The operation of a rotation on a point of the
covering space CQ is not uniquely defined by its
effect on the points of Q; there is an intrinsic multi-
valuedness. For the uniqueness of definition we must
also go to the covering space of the rotation group.
If G is any continuous connected group, we turn the
covering space of @ into a group by considering
paths that begin at the identity 1 in G and defining
the product of two such paths g(s) and ¢'(s) through
point-by-point multiplication:

g(s)-g'(s) = g”'(9).

It is important, of course, that the equivalence class
of g”’(s) is determined by those of g(s) and ¢'(s).
Some well-known groups and their covering groups
are

CR =R, C8 =R, CS0, = 8SU,,

where R is the additive group of the real numbers
and SO; is the rotation group in three (real) dimen-
sions.

Suppose G operates on @ according to some rule
g © q. We can now define the operation of CG on
CQ through the point-by-point operation of G' on Q.
If h = {g(s)} and p = {g(s)} then we define

hop = {g(s) o g} = {¢G)}.

This makes A o p an element of C(g o ¢). Since
¢'(0) = q(0), the path ¢’(s) defines a point of CQ
which is obviously determined by the equivalence
classes of g(s) and ¢(s). [An equally natural defini-
tion of Cg o Cg uses the path consisting of ¢(2s),
0 < s < %, from ¢, to g(1), followed by the path
g(2s — 1) 0 g(1), 3 < s < 1, from ¢(1) o ¢(1). This
is equivalent.]

6. When we speak of multivalued representations
of a group G, we really mean single-valued repre-
sentations of CG. The multiplicity of the representa-
tion of G (the number of values at a point g of @)
is at most the number of points of CG covering
each point of G, which is a topological property
of @. For the rotation group G = SO0;(R), CF covers
@ twice so that 2 is the highest multiplicity possible.
This multiplicity is attained for the multivalued
wavefunction ¥[p] if points p and 1’ o p are different
points of CQ, where 1’ represents the element of
C1 which is not the identity of CG; because then
it is possible to construct a continuous function
(al) ¥ [p] which takes on different values on the
two different points p and 1’ o p covering the same
point ¢ of the underlying configuration space Q.
The paths in C1 are loops, where their end and initial
points coincide.

DAVID FINKELSTEIN

7. This implies the criterion for the existence of
negative spin parity stated previously®:®:

The loop g(s) o ¢ must be nontrivial when the
loops g(s) is nontrivial. In other words, g(s) o ¢ must
determine an element of order 2 of the fundamental
group m(Q). We shall call negative spin parity
(W = —1) simply spin when this does not lead to
confusion.

8. To compute 1r1(Q) where Q@ = & (p,) we
proceed as follows. A loop in @ is a mapping such that

(a) ¢(x, s) is continuous in x and s for x in X,
0<s<1;

(b) o(=, $) = @;

(0) ¢, 0) = ¢(x), o(x, 1) = ¢(x). 2
It is therefore equivalent to a mapping of a 4-cell
X X I or I* with given boundary values on the
boundary 8I‘. We require the homotopy classifica-
tion of such mappings. When a 2r rotation acts
on a field ¢(x) it results in a loop in Q

ow(X, 8) = g(s) 0 olg7 (®)x],
where g(s) traverses a loop in the rotation group G
of order 2 in 7,(@). The transformation laws of
both space points x and field values ¢ figure in
this loop. We require the order of ¢y (x, s) in =,(Q):
is it 1 or 2?

9. In general, it seems that the order of ¢y (X, s)
could depend on the choice of ¢(x), but an example
of this has not been established. If the space @ is
connected, there is no such dependence, because
homotopic fields yield homotopic 2= rotations. This is
the situation when kinks are not possible, though
spin (Sec. V.7) may be.

10. Even if kinks are admitted and @ is dis-
connected, the order may not depend on the initial
field, i.e., on the presence and nature of its kinks.
For example, if & admits a group structure (¢, as
identity, without loss of generality), then this group
structure enables a homeomorphism to be estab-
lished between any component ¢, of @ and the
component , containing the constant field ¢(x) = ¢,
so that »,(Q,) ~ m(Q,). If moreover =, (Q,) = 1
it follows that 7,(Q,) = 1.

11. There is a heuristic argument which suggests
that either spin-} wavefunctionals can be con-
structed with any connected component of @ as
support, or else there are none at all. If any kind
of kink admits odd-spin parity W, a combination
of that kink in an odd-W state with its antikink

% This spin criterion is apﬁlied to numerous mechanical
%rllggg;ld) systems in D. Finkelstein, Phys. Rev. 100, 924
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in an even-W state should give an odd-W state
with no kinks. A combination of this state with an
even-W state of any number of any kind of kinks
then should give an odd-W state with the same
kinks.

12. We now take initial fields ¢(x) = ¢, in (2).
Then ¢(x, 8) = ¢, for
x| - », 0<Ls<1
any x, s = 0,
any X, s = 1.

Now, the loop ¢w (%, s) in @ defines an element of
74(®, o), which is either the identity or of order 2 by
Sec. V. 8.

So the first test for spin is to find 7 (®, ¢,) and
see if it contains an element of order 2. If so, this
shows that the theory admits double-valued wave-
functionals describing zero kinks. It is then necessary
to test whether the loop ¢#(x, s) is of order 2.
If not, it is then necessary to consider wavefunc-
tionals describing nonzero kinks, for which the con-
siderations of Secs. V. 9-11 are helpful. This is the
criterion formulated previously for application to
general relativity,” and we now apply it to a wider
range of theories.

13. In each case we have to ask how the rotation
group @G acts on ®. It is frequently natural to suppose
that the boundary value ¢,, which ¢ approaches as
|x] — «, is invariant under G, in order to guarantee
isotropy of the theory. Then the field ¢(x) = ¢,
typical of the zero-kinks case, is spherically sym-
metric, the loop ¢w(x, §) is trivial, and there is no
spin. That leaves only the case where kinks are
present to be investigated.

14. Furthermore, if all physical quantities depend
on ¢ not directly but only through invariants formed
from ¢ and the derivatives of ¢, isotropy is still
possible with g o ¢, % ¢, and the field with no
kinks may have spin.

V1. EXAMPLES OF SPIN CALCULATIONS
1. Vector fields
& = R", 7.(®, ¢o) = 1. No spin here.

2. Unit 3-vector field

® = 8% 7, = 2 according to Table I, so that
double-valued wavefunctionals are admitted by this
theory. For the second test we need the action of the
rotation group G on ®. First (cf. Sec. V. 13) the
boundary value ¢, is assumed to be invariant under
G. It can readily be shown that this implies that & is
invariant under G : g © ¢ = ¢, as in the case of an
isovector field. Since the constant field o(x) = ¢, is
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spherically symmetric, the loop ¢w(x, s) is just one
point, therefore trivial, and the states of zero kinks
possess even-spin parity. But the one-kink field (2) is
not spherically symmetric, and we do not know
whether the corresponding loop is trivial (cf. Sec.
V.11). Conclusion: For a unit isovector field, odd-
spin parity is excluded in the absence of kinks but
has not been excluded in the presence of a kink.

On the other hand, for a unit spatial vector,
¢(X) = @, is not spherically symmetric and ¢y (x, s)
is not independent of s, but may readily be shown
to be trivial. (Deform the axis of rotation to lie
along ¢,.) The conclusion is thus the same for a
vector as an isovector.

3. Unit 4-vector field

® = 8% m(®, ¢o) = 2, (Table I), showing the
possibility of double-valued wavefunctionals. We
now ask the action of G' on ®. The first choice that
comes to mind is to treat the 4-vector ¢ as a Lorentz
4-vector, transforming only three components ¢;¢.¢;
and leaving ¢, alone. This law of transformation
leaves the constant field o(x) = (1, 0, 0, 0) fixed, so
the zero-kink states have even-spin parity. By
Sec. V. 10, since S°® is a group (SU, or the unit
quaternions), the n-kink states also have even-spin
parity. If ¢ is treated as an isovector, g o ¢ = ¢,
the result is the same, according to Secs. V. 10, V. 13.

4. Rotator field

® = 80; ~ P 7, (P = n,(S*) = 2 (Table I)
80 we must consider the action of Gon ®.If g 0 o = ¢,
(“isorotator’”) there is no odd W in Q,. If ¢ is re-
garded as an element of @ and g o ¢ is the group
product, then, for ¢(z) = ¢, = 1 (without loss of
generality), ow (X, s) = g(s), a 27 rotation. This is
obviously nontrivial. Conclusion: A rotator field
exhibits odd-spin parity.

5. General Relativity

The spherical symmetry of the Minkowski metric
shows that there is no odd-spin parity in the absence
of kinks. But the kink in this field itself admits a
spherically symmetric representation, and so cannot
possess odd-spin parity.®

6. Displacement field

The reduction of this problem to the rotator
problem was already performed in the analysis of
the kinks in the displacement field, and enables us
to limit our inspection to a field ¢(x) with ¢ in SO,.
The action of a rotation g on ¢ is readily seen to be
g © ¢ = ge. This is the second of the cases treated
in Sec. VI. 4 and was found there to admit spin,
and so the displacement field likewise admits spin.
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In this paper, we find closed form solutions to unsubtracted and once-subtracted N/D equations,
both nonrelativistic and relativistic, with pathological left-hand absorptive parts that increase at
large v like o —v) ~ —X»™, m not necessarily integral. The solutions allow dispersive, unitary and
regulator-free calculation in nonrenormalizable field theory. For example, N/D equations with ex-
change of a higher spin particle (spin § etc.) can be solved. In general, the technique allows the use
of a large class of divergent graphs as input, that is, those whose left-hand absorptive parts are finite,
although asymptotically ill behaved. For example, in the W theory of leptonic weak interactions, one
of the possible inputs is any number of ladder graphs cut so that all the bosons are on the mass shell.
Many nonplanar grapbs can be included as well. In much the same way, we can also calculate in the
Fermi theory, (multiple exchanges in) theories of higher spin in general, and theories with derivative
coupling.

There are an infinite number of solutions to these singular integral equations, each of which is
characterized by a branch point at g2 = 0, and a branch point of oscillatory nature at infinite |»|. Qut
of these, we pick the solution which sums the iterative expansion of the equations as most meaningful.
It is seen explicitly that the unitary requirement generates its own regulation in the form of rapid oscil-
lations at large unphysical energies, thus eliminating the need for any regulator limiting process. The
oscillations are associated with an infinite number of ghosts, but these stay very far from the physical
region. In addition, the solutions violate unitarity in the cross channels, so we expect the program
to be useful at most in and near the physical region. As shorter range forces are systematically in-
cluded, there is some indication that the program may converge rapidly for small physical energies.
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INTRODUCTION

S has been previously discussed,'” many indi-
vidual terms in the perturbation expansion
of a nonrenormalizable field theory, although diver-
gent, have finite absorptive parts. For example,
in the W-meson theory of leptonic weak interactions,
each of the ladder graphs cut parallel to the lepton
lines (Fig. 1) is finite, because there remain no
closed loops from which a divergent integration
could occur. In the partial waves of the s channel,
this means that the discontinuity across each of
the left-hand cuts associated with multiple W-meson
exchange is finite. The nonrenormalizability of the
theory is reflected in the fact that these discon-
tinuities a(v) increase far to the left like powers of ».
(v is the center of mass 3-momentum squared.) For
the exchange of N W mesons, it was shown that
asymptotically

a(—») ~ N

* Based in part on the Ph. D. thesis *“‘S-Matrix Theory and
Higher Order Connections to Weak Interactions,” Harvard
University, October 1964, during which time the author was a
National Science Foundation Pre-doctoral Fellow. .

+ Present address: Physics Department, University of

California, Berkeley 94720. . L
1 M. B. Halpern, Doctoral thesis. Harvard University,

964, .
2 M. B. Halpern, Phys. Rev. 140, B1570 (1965). See this
reference for related references in nonrenormalizable field

theory.

The possibility of summing the left-hand dis-
continuities has been discussed in the previous
references. Here we want to actually find solutions
to N/D equations whose inputs are pathological.
The idea would be to solve for some finite number
of W exchanges, and study the convergence of the
solution as shorter and shorter range forces are
included. There is some indication that the result
in the low-energy physical region may essentially
be independent of N for fairly large N.

In general, the solutions obtained will allow us
to use as input into the N/D equations any set of
graphs, regardless of divergence, whose left-hand
cuts (in general asymptotically ill behaved) are finite.
This includes the exchange of one or more particles
of higher spins (e.g., or spin § exchange). Many
nonplanar graphs and subsets of graphs in the
Fermi theory and derivative coupling theories can
be included as well. (It is clear that any ladder-type
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RENORMALIZABLE FIELD THEORY

graph can be included because, as above, cutting
all the exchange lines leaves no possibility of
divergence.)

A few preliminary comments are in order. The
first is that, as we shall see, all four types of N/D
equations considered here (homogeneous and in-
homogeneous, relativistic and nonrelativistic) in-
volve essentially the same principles and difficulties
in their solutions. The second comment concerns
the order of presentation of the material. We could
simply have begun with the relativistic once-
subtracted equations, which, according to discussion
in the previous references are the ones that we
want (at least for the W theory). But, because the
nonrelativistic homogeneous (unsubtracted) equa-
tions involve most of the same principles and avoid
the “frosting on the cake” complications of the
inhomogeneity and the relativistic phase-space
factor, we felt it would be better to begin with it.
The unsubtracted, relativistic and nonrelativistic
cases are the subject of Part A. The inhomogeneous
(once-subtracted equations) are studied in Part B.
The third comment is that the Fourier transform
methods we employ for the solution in all these
cases are on the borderline of being ill defined. At
least when everything is discussed in terms of
integral representations in some ranges of the param-
eters involved, it is necessary to introduce a conver-
gence factor, analogous to the ordinary exp (—e |z|)
convergence factor of usual Fourier transform
theory, and appropriate to the rapid oscillations
found in these solutions. We emphasize that we shall
find this convergence factor to be self-justifying
in that its use leads to solutions that explicitly
satisfy the original integral equations. We remark
also that, in all cases, there are an infinite number
of solutions to the equations. Out of these we pick
the solution which sums the iterative solution, which,
as discussed in the previous references, we feel is
the most physical. This is the subject of Part C.

Finally we emphasize that all the solutions to
these singular N/D equations involve an infinite
number of ghosts very far to the left. Because of
these ghosts, our program is evidently having some
of the same sort of trouble as we have found in
the Feinberg-Pais (FP) program.''* We advance
arguments as to why our ghosts may be less serious
than the failures of the Feinberg-Pais program,
and even try to interpret the ghosts as indicating
an oscillatory left-hand cut in the full theory.
However, when faced with repeated breakdown of
field theoretic postulates like this, one cannot help
but also wonder if it is even possible to require
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all the postulates of local field theory in the presence
of nonrenormalizability.

A. HOMOGENEOUS N/D EQUATIONS

We first consider the nonrelativistic (NR) unsub-
tracted N/D equations and later generalize to the
relativistic (and inhomogeneous) cases.

Nonrelativistic, Unsubtracted, Homogeneous Case

We are interested then in the solution of the
coupled integral equations®

¥O = [ ~E D@ae,

* s 5#NG)

§ — 8

®
D@ = -1 [

with inputs of asymptotic form a(—s) ~ f(g*)s? ™2,
s = +o, m > 1. We have already scaled the
(dimensionless) center-of-mass energy s in units of
the lowest possible mass exchange—for the lepton
ladder this is essentially (M)®. We would like to
point out that there is no known reason for the
N/D equations with these singular inputs not to
have solutions. That is, a(s) and D(s) always appear
multiplied together, and, hopefully, the D function
will correct for the ill behavior of the input.

If solutions to (1) exist, we can say ahead of
time that the amplitude must exhibit a branch
point of an oscillatory nature at |s] = «, and an
infinite number of ghosts. That « must be a branch
point follows simply from having the right- and
left-hand cuts go all the way to «.* That it must
be of an oscillatory nature comes about in the
following way: the asymptotic modulus of the
amplitude is required to be bounded from below
on the left by [s|*"™" (because that is the behavior
of the absorptive part), and from above on the
right by s™* (unitarity). This requires the asymptotic
modulus of the solution to be, in general, different
along different rays toward o. This implies that
the branch point must be associated either with
exponential increase {for example, (In s)lexp (s)],
exp (s, ete.} or oscillations [for example, exp i(In ) )
exp 7(In” ), etc.] because ordinary branch points
at o (eg, In s, s etc.) are characterized by
having the same asymptotic behavior of their
modulus as the point at o« is approached from
different directions. The assumption of dispersion

3 R. Blankenbecler, M. L. Goldberger, N. N. Khuri,
and 8. B. Treiman, Ann. Phys. 10, 62 (1960).

¢ Whenever either a right cut or a left cut goes all the way
to the point at «, the singularity at « cannot be an essential
singularity, as this term is properly reserved only for single-
valued functions.
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relations forces the branch point to be oscillatory,
as Hilbert transforms do not admit exponential
increase. If A = N/D has the oscillatory branch
point, then at least one of N and D must also.
In fact, since N and D are, respectively, each other’s
spectral functions, if one oscillates, so does the
other. The oscillations (zeros on the left) of D
will correspond to ghosts in the solution.

We will solve (1) by expanding about the “most
singular’”’ part of the input in a unitary manner,
That is, we write

a(®) = ao(®) + Aal), aol) = (=" V1(g"),
Aa(s) = afs) — afs),

where ¢g° is the weak coupling constant, and take
as the “most singular’’ approximation

@

No@ = [ 75 D), o
o L[ ds NG
Dols) = _wj; 5"'85———:3’

which maintains the unitarity. Although we have
kept the high-energy pathology of the model, we
have let the left-hand cut come down to s = 0.
Because of this and the neglect of all the low-energy
information in «(s), we expect the solution N,/D,
to be poor near threshold. Assuming solutions to (3)
can be found, we can iterate around Do(s) in a
unitary way, just as one ordinarily iterates around 1
in the once-subtracted N/D equations.’ That is,
the first iterated solution is

-1 ’

Nis) = ‘/;” s —s Dy(s)els"), @
L l( i 12
Dy(s) = ‘% fo as s)jv ;(s

and so on in the ordinary way. Notice that we have
the correct gap to the left of threshold: The primary
function of the iteration scheme is to correct near
threshold the two defects in that region of the
“most singular” N, and D,. Further, we have
every reason to believe that, if N, and D, exist,
so also do the solutions to the full equations (1) as
well, since the former include all the pathology of
the latter. (Certainly any finite number of iterations
exist.) We comment finally that, just as in any N/D
iteration scheme, at any finite level of the iteration
we do not have the exact left-hand cut. In (4) we
have, instead of a(s), the discontinuity

[Do(s)/ Di(8)]es) -

& For example, see F. Zachariason and C. Zemach, Phys.
Rev. 128, 849 (1962).
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The equation for the D function, in this most
singular approximation is, submerging the index

Zero
_ [" D(=3a(—3) ds
D= = [ AR

In the region ¢ < 0, we introduce the change of
variable —s = z°, D(—s) = D(z), a(—s) = A(z),
in terms of which we find

(5a)

o [(ydy AYDQ)
D) = 2 fo L (5b)
The further change of variable
z=2¢ D) = 20, ®

B’ = 2A@) = f(g)e™
results in
2)) = 1(¢) [ dne”sech 3o — Do) ()

We present here a general method for finding
solutions to the class of homogeneous integral
equations

o) = o [ K — o™ dn

—o

+

®

when such exist. In Fourier transform space, we
obtain the finite difference equation

) = K@)dlw + mi),

Fl) = -21; f : R de.

The inverse Fourier transform of a solution to (9)
does not automatically satisfy (8).° It is easy to

®

¢ For example, Eq. (7) goes over in Fourier transform
space to ®(w) = 2r f(g?) sech 7 w (o + m). We can easily
guess a %articular solution to the difference equation whose
inverse Fourier transform does not satisfly (7). Since the
solution to Q(w) = AQ(w + 7m), A constant, is Q(w) = Aiv/m,
and because sech 7 w 15 almost a constant under translation
through the period strip, we are tempted to guess a solution of
the form ®(w) = (2 7 g? sech 7 w)i#/™ F(w). This results in the
simpler equation F(w) = (— 1)¢(=*ém) F(y -+ ym), The further
guess F{w) = (— 1)9*#n g(w) leaves only glw) = (— 1)1
g{w + im), which is solved immediately as in the first example.
Thus, we have found the particular solution to the difference
equation

Fp(w) = [2 x f(g?) sech  wffwim (— 1)ke (= 1)o7/m,

But this does not satisfy (11a) because it has poles in the
period strip, and its inverse transform is not a solution of (7).
It is easy to show that ®p(w) @ () is also a solution of the
difference equation if @& (w) 18 a function of period im. We
could attempt to find some @ («) so that @ () ®p(w) satisfied
(11), but our Fourier transform technique does this for us. To
anticipate slightly, we notice that even this &p(w) manifests
the very important ei*® behavior; it was generated because
sechrw changes sign under translation through the period
strip.
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show by substitution back into (8) that a sufficient
condition for

+o
f Bt do
to be a solution is

+10o+im

f_ " Bt do = B()e't* do.

© —{o+im

(10)

That is, we must be able to translate the contour
through the ‘“‘period strip.” To guarantee this, it
is necessary that ®(w) is

(a) analyticin the period strip0 < Imw < m,

(b) such that the line integrals closing the
contour at Re w = £ o (Fig. 2) can be
neglected.

(11)

We can guarantee condition (11a) by solving (9)
in the following manner. Define a new function
F(w) by

dw) = exp Flw), Flw+ im) — F(w)

= —In K(w). (12)
In Fourier transform space, this becomes
F@) =1 1 = f do &** In K() + A 5(z), (13)

where \ is an arbitrary constant that results from
the division by the singular structure 1 — €™. It
corresponds to the multiplicative constant that
always remains undetermined in a homogeneous
equation. We may leave the singularity at z = 0
unspecified, remembering that a particular choice
(&ie etc.,) can only change ®(w) by a constant
factor. Then, a particular solution to (9) is

+o d:c e-—iwz

l_emz

X [ - dée'™ In K(&)]}- 19

-

Plw) = exp{

“The factor (1 — ™) guarantees (11a) as promised;
whether or not (11b) is satisfied has to be checked
for each particular K(w). If so, then the particular
solution of (8) is

+o d_x e—"uz

BE) = f_» e"”‘dwexp{_m 1 — o

% [ [ +: du e In K(w):l}- 15)

Depending on the particular kernel, there may be
other solutions to (8). If ®(w) is a solution of (9),
certainly any function of the form @(w)®(w), where
@(w) = @{w -+ ¥m) is also. Generally, however, such
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mw=zm
Imw=0

Fia. 2. Closing the contour at Re w = £ ®.

functions, for example, cosh 27w/m, sech 27w/m,
will either put poles in the period strip, violating
(11a), or cause exponential increase at large o,
violating (11b). We postpone the important dis-
cussion of the uniqueness of the solutions until
later in the paper.

In the particular case of Eq. (7), we find

K(w) = 27f(¢g°) sech zw. (16)

The solution depends then on the evaluation of
the Fourier transform’

+o
f e In (s—ec}21 Ww) dw

Pr [*° fwz _ T
=28 [ tanhmw e do =P )
In w space then we find
P(w) = exp {%" In [4xf(g")]
P +w dx e—iwz
+ 2 ./;u, z(1 — &™) sinh %x} ! (18)
where we have taken (1 — ¢™)™" — P(1 — ¢™)™*

for simplicity. Observe that the original symmetry
of (9) with this particular K(w), namely, ®(w) =
&*(—w) for real w, is here guaranteed by the principal
part. This preserves the reality of the D function
on the left. We have received a small bonus in
analyticity: (18) is analytic in the strip

—31<Imew<m+ 1.

The integral that appears in (18) can be evaluated
in terms of well-known functions, in particular,
logarithms, dilogarithms, and hypergeometric func-
tions. This is done in Appendix III. The explicit
form is of use in applications of the theory, but
the integral representation is more compact and
convenient for the theoretical development of the
program,

To decide whether

D(—s) = (st f_ j e do l:exp {%“’ In [4x(g)]

P r dr e "
+3 /. 7 — &™) sinh x}] (19)

7 An example of this kind of integration is given in Ap-
pendix ITI.
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actually solves (5), we must determine whether
or not (11b) is satisfied. The behavior of ®(w) at
large || is dominated by the third-order pole at
z = 0. A simple calculation yields the asymptotic
behavior for large |w|

({w/m) lndxf(g*)

@(0)) ~ e—(r:‘/2m)¢(Re u)(w’—imm)e

(20)

We see that ®(w) is exponentially damped for
Im w < im, but in the region im < Im w < m,
|[Re w| — o, there is both exponential increase
and extremely rapid oscillation. In fact, the vertical
line integrals go to the curiously ill-defined form

¢ o 1)

as |Re w] — . Moreover, the integral along the
top of the period strip has the peculiar form
f+m eir!wl dw eiwfe-(irw'/zm)l(m) (22)
whose integrand has an exponentially increasing
modulus! Both structures (21) and (22) lack defi-
nition as they stand, and it is not clear whether
or not D(—s), as given in (19), formally solves (5).
We need to discuss this seeming lack of definition
in some detail. We show that the original equations
(3) have built into them a natural definition for
these ill-defined structures. In particular, we show
that the prescription

B(w) — dlw)e " (23)

actually yields an N(s) and D(s) that explicitly
have the correct discontinuity relations, taking the
e = 0 limit after all integrations are performed.
This is done in the section below entitled The N
function and the full amplitude N/D: The validity
of the convergence factor. In this way, the results of
the convergence factor will justify its use (and raise
itself above the level of the FP regulation procedure
which, as was discussed in the previous references,
creates a solution where there really is none).
We postpone the explicit demonstration that the
N and D obtained with the convergence factor in
fact have the correct discontinuities until we have
introduced the relativistic equations which are closer
to our direct interest.

Notice that the use of the convergence factor (23)

Im w

/|

F1a. 3. Rotation that proves

ne %
the convergence of G{™.

4 Re w
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yields exactly our solution (19) because, for ¢ = 0,
the sufficient conditions (11) are satisfied:

(a) The vertical line integrals at |Re w| = « go to
zero; thus we learn that the convergence factor sets
such ill-defined structures to zero.

(b) The ¢ = 0 limit of

D(—s) = s f_ " exp (o In )8 do  (24)

@

is smooth and goes to (19) because (19) was well-
defined in the first place.

(c) The inverse transform with contour along
the top of the period strip is defined.

In statement (c), we mean that, after the integral
is done, the e limit is smooth and finite. For example,
consider the family of functions whose integrands
(without the convergence factors) have exponen-
tially increasing moduli:
+e

GM(z) = f e et e %™ dw.  (25)
Fven when m is a positive integer, G™ (z) is certainly
well defined for ¢ 5% 0. The question is whether or
not, after evaluating such an integral, the ¢ = 0
limit is smooth and finite. It is simple to show
that the answer is in the affirmative. We can rotate
the contour of integration in (25) by 44w to obtain

G = o (+im) [ exp ()
X exp (—R?) exp (—eR’) exp (izRe**'*) dR. (26)

In the rotation of Fig. 3 the factors e**“’¢™**’
allow us to drop the contribution at large |w|. The
well-defined (26) has an obviously smooth and
finite limit in ¢, thanks to the tremendous (super-
exponential) damping power of ¢'“" along this new
contour:

G5"(a) = exp (+1im) [ " exp (mRé')
X exp (—R?) exp (izRe*¥'™) dR.  (27)

It is easy to show that, if € is set to zero before the
rotation, the contribution at large |w| goes to
e'"'e"/=®. Again we see that the convergence
factor defines this sort of structure to zero. Actually,
G™(z) can be explicitly evaluated by completing the
square and using the convergence factor to translate
the contour. We find, for example,

G () = exp {*“ = 6)[21(;-—1.9:)]2}

x [ +: exp [(i — 0’| dw.  (28)
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The e limit is smooth and finite because the e
always appears in the combination ¢ — ¢ (the ¢ is
from the ¢*“'!). We find

V@ = (1 + 90 exp [}(—i2" — 2z +9)].  (29)

We have learned then in both methods of evalu-
ation of G that, although the convergence factor
e™*’ will define, for e % 0, any integral the modulus
of whose integrand increases exponentially, only
the powerful oscillations of the ¢*“’ factor, and its
associated damping power, allows a smooth finite
¢ = 0 limit after the integration! Without the e™**",
the e *“" is powerless to bring about any lasting
convergence; for example, although

[

+uec‘zwe—ta' dw

+ \2 +o
- e |+ {55 [

is well defined for ¢ # 0, its ¢ = 0 limit blows up.

Two final comments are in order here about
integrals like @ (z): first, we note that we can,
in general, expect exponential increase in x from
integrals of this kind. For example, as we see
in (29), the modulus of G{(z) increases expo-
nentially for large negative z. Second, it is worth
noting that considerations similar to those just
given can be extended to include a very large class
of curious integrals. Consider

e " dw (30)

@@ = [ e do,
- @1)

Fm.n ~ e(mw)"et'w"*“.

Despite terrible superexponential increase of the
moduli of these integrands, the G™'"(z) have smooth,
finite limits with the convergence factors

—e|w |t
[ .

The proof of this for all » is analogous to that
given for n = 1. For general n, the necessary
rotation is ©, = n/2(n + 1). The case n = 0 is,
in faet, simply the ordinary §-function definition!
Our convergence factor is in this sense a gener-
alization of the ordinary e *'“' that we would use
naturally in Fourier transforming an ordinary oscil-
latory function like cos w. The simple convergence
factor e™*'“! can, of course, be put on a rigorous
footing,® but we cannot do anything so simple
for n > 0. Presumably the use of ¢™**’
be made rigorous in distribution theory, but as

8 E. C. Titchmarsh, Theory of Fourier Inlegrals (Oxford
Clarendon Press, New York, 1950).

ete., could.
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stated above, our justification for its use is the
fact that it will lead us to N and D funections which
explicitly satisfy the discontinuity relations.

Relativistic N/D

The method can easily be extended to the rela-
tivistic homogeneous N/D equations. The situation
in this case is essentially the same as for the NR
equations. Consider

Ngy =1 [ DS
- (32)
DG = _%'/; pfu’)gvgv') v’ ’

v —v

where v is the dimensionless center-of-mass (mo-
mentum)®. We take as the ‘“most singular’’ approxi-
mation to this,

* Do)l '

NQ(V) = T N
- v 14 (33)
DO(V) — __;l;j N()/!V_) dv ,
0 v 14

where, consistent with keeping only

@) = f(g")(—»)",

we have set p(v) = 1. This approximation preserves
only high-energy unitarity, but we enforce exact
unitarity with the iteration scheme: for example,

N.G) =%f; Dy(v)al) dv’

< 4 " ’ 34
D1(V)"= —%ﬁ P(V—)V,MEV_I)’(!V_
Defining, in Eq. (33)
D(=2) = DG), o(=») =ab), v=¢, »>0, (35)

MNo(e) = x®, D) = a@),
we obtain the two coupled integral equations for
N(), Do,
2 +ew
x® = ~IL [ 4y sech 3(r — Do,
—e (36)
1 1
8® = —5- [ dnsech 3(n — (o).
These go over, in Fourier transform space, into the
two coupled finite difference equations,
x@ = —f(g") sech ma®(o + im),
®@w) = —sech mux().

- @3N
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The equation for the D function is
dw) = f(g°) sech® mwd(w + im),
K@) = f(g*) sech® mw.

Using the general technique proposed above, we
obtain

(38)

+o
D('—V) — 1 dweiu lnve(iwlm) In f(g%)4
»
—

+o dx e—a‘ wz

X exp [P L. z(l — &™) sinh %x]

This is almost identical to the nonrelativistic

solution, and all the previous discussion about the

convergence factor, etc., may be taken over here

in toto. It should be mentioned that here too we

find ®(w) analytic in the upper half-plane. This
time

$w) ~ exp {2 1n [ — i(m + )]}
~w—im+ P (40)

near w = ¢(m -+ %). In the relativistic case, the
zero is second order, in contrast with the first-
order zero found in the nonrelativistic case. Sub-
sequent application of the difference equation (38)
proves the analyticity in the upper half-plane, just
as in the NR case. Again, the lower half-plane is
analytic except for poles of increasing order on the
negative imaginary axis. The principal part integral
of (39) is evaluated in Appendix III.

The N function and the full amplitude A = N/D: the
validity of the convergence factor

(39)

In this section, we explicitly establish that the
¢ convergence factor prescription gives the correct
right- and left-hand discontinuities. In this, we
concern ourselves primarily with the relativistic
equations, but our remarks apply in principle to
the nonrelativistic case as well.

Knowledge of the function ®(w) solves the scat-
tering problem completely because, for example,
using Eq. (37) and Eq. (38), we can find the N
function

N@) = —%; ./;,, ¢'“ ™" cosh mwd(w), » >0, (41)

which saves us doing the Hilbert transformation

i
v,

Fra. 4. Cuts and
,=+W phases for N and D.
0 A
6,=-w

8:0
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that is usually necessary to find N from D. The
Fourier transform structure naturally incorporates
the real analyticity of N and D, as is clear on
taking » complex:

—-$idp + o

Dr, 8,) = "—r;— €U 2P(w) dw,  (42a)
e—}id)v o
N(T, 0)\') — — T} f etw lnre-—wt’)v
X cosh mwd(w) dw, (42b)

where » = re'® and the cuts and phases are taken
as in Fig. 4.

Notice from Eq. (42) that D on the right and
left, and N on the right, are convergent integrals.
On the other hand, N on the left, when written in
the form of this integral representation, needs
the convergence factor for convergence.

Above and below the cuts, we find

D@ & 49)
= % f ¢ B dw, v >0,  (43a)
N = i8) = iﬁ;f_ ¢ 1 Gy g
X cosh mw®(w), v < 0. (43b)

Also, it is simple to verify from Egs. (42) and (43)
that for » > 0

NG) = (1/2)[D — i8) — D + i8)].  (44a)

This is the ordinary discontinuity relation on the
right, reflecting unitarity. Actually, because N and D
on the right are convergent integrals, Eq. (44a)
follows without use of the convergence factor.
For v < 0, using Eq. (38)

Im NG + 45)
= % [N(re'™) — N(re™*")]

+ o
= %; f e’ ™" cosh® mud(w) dw

— %lrmf eiw lnré(w) dw

= {(g")r"DG). (44b)

In this, we have used our ability to translate through
the strip in the last step. T'o do this, the convergence
factor is necessary. Equation (44b) is the ordinary
discontinuity relation on the left, the statement
about the left-hand input. Thus, we find that,
using the convergence factor when we need if,
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automatically yields the correct discontinuity re-
lations. This proves then the validity of the con-
vergence factor. Below we find the explicit forms of
N and D, at least asymptotically, and verify
explicitly the preservation of the discontinuity re-
lations.

We have occasion below to use the further
relations derivable from Eq. (42):

NG) = 3[D() + D)), (45)
" +oo
% f e'“ ™" cosh 10®(w) dw
== +o y ¥V > 0-
/ e e’ " P(w) do
A@) =4 +:° (46)
zf e’ 'e"*" cosh rwd(w) dw
= , »<0.
[ e o

The meaning of the convergence factor

Before going any further it proves very instructive
to study the nature of the e *“” factor more closely.
We find that it corresponds to solving a modified
problem in which the original input is multiplied
by an oscillatory factor which goes to unity as e — 0.

To show this, we consider, instead of Eq. (3),
the slightly modified set of N/D equations

N.G) = 1/° D,(v’,)&(v') v’ ,
T - v —vVv ( 47)
1 NG dv

7
T Jo v —vV

DG = ,
where the absorptive part on the left, a(v), is
defined to be

a() = a() D.()/D.() (48)
and «v) is the original input. D .(») is the solution
itself and ¢ is a small positive parameter. We are
studying then a self-consistent problem of sorts in
which the discontinuity on the left is determined
by the solution, which determines the discontinuity
on the left, and so forth. In the limit ¢ = 0, Egs.
(47) reduce to Eq. (3). In these slightly modified
equations, e.g., in the equation for D,

© 2,€ 4 '4
D~ =5 [ R g gy
7 Jo y — v v
we are simply refusing to evaluate the two D./s at
exactly the same value of s until the end of the
calculation. In Fourier transform space, we have

() = e"*“f(¢g")d(w + im) sech® 7w, (50)
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whose solution, in terms of Eq. (18) is simply
B (w) = Dlw)e™ et e, (51

Thus, the modified input (48) is completely equiv-
alent to the convergence factor prescription (23).
It is quite clear that (51) satisfies (11) and we
obtain, for ¢ > 0,

D (~v) = v_*f e "™ dw
. 2 .
G o, @l | dwe
X exp | 2 n fgn — 2 4 B

+o dx e—t‘wz
+P [ ey %x:l
The smooth ¢ — 0 limit again yields exactly our
formal solution (19).

What does this small translation » — ve® in (47)
mean physically? We know that it corresponds to
a modified left-hand discontinuity, the high-energy
behavior of which we want to study here. It turns
out that D.(ve?)/D.(») is oscillatory for |»| — o,
e # 0, thus helping to tone down the terrible
inputs of the original problem. We are interested
then in finding the high-energy limit of &,(£).

Writing

(52)

®.() = -/:j e d(w)e " dw (63)

with ®(w) as given in (18), and using (20), we find
two saddle points in the integrand at

1
“« = 31 = (ime/n)
m o, omE 1 2
X [:I: 5t T 5 In 4f(9):|,
Ime, = 1

+1 + (m’é/x°)
m, me 215,

X {2 + 5os Imé + In 4f<g>1} (54)
The motion of these for fixed £, as ¢ — 0, are shown
in Fig. 5. Presumably there is also some sort of
singularity at Im @ = m + %, along which the
Fourier transform in (18) ceases to converge. It

———Imw=m "'LI"
smaller

=M
Imw 2

Re w

F1a. 5. Motion of the saddle points in the integrand of ®e(£).
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appears at first glance that the saddle points will
dominate the behavior as long as Im w, < m 4 3.
However, for higher ¢ ie., £ > (m + 1)x°/m’e
one expects the singularity at Im w = m 4+ % to
dominate, as the saddle points at very high energy
are above that line. Actually, this is not the case;
as we show, in fact, doing the integral in &®(w)
yields a function analytic in the upper half-plane—so
that the contribution from the saddle points domi-
nates at high energies.

We can translate the contour of (53) up to
Imw = m + 1 to find

89 = P [ el + ilm + D do, (65
3o+ im + B = exp {75fo + itm + D}

X exp {L%’_’L‘%)] In 4f(5)

— 2P f: 2 _Z-:%Zx_ e")}‘

Certainly the integral in the exponent has a singu-

larity at @ = 0. An elementary calculation yields
+w e—c‘zu dx
P f_w ey~ ~he w0 ()
Thus, near o = 0, we find
Blw + i(m + H] ~ . 67

That is, the exponentiation of the logarithmic
singularity has completely removed it, leaving the
boundary of the period strip free of singularities!
Moreover, since

®(w +.9m) = [f(g")]7 cosh® rwd()  (58)

then analyticity in the strip 0 < Imow < m + % is
sufficient to guarantee analyticity in the entire
upper half-plane, except for the point at infinity.
This is not to say that the lower half-plane is
analytic, because to relate down a period strip,
one must multiply by factors of sech® ww, which
will generate an infinite set of poles of higher and
higher order along the negative imaginary axis.
Except for these poles, the lower half-plane is
also analytic.

With e = 0, it is a straightforward matter to
translate the integral (53) to the line Im w = Im w,
and approximate by the method of stationary phase
along that path. Dropping terms in ¢ and keeping
only terms linear or quadratic in £ we find the
dominant contribution at large £ to be

MARTIN B. HALPERN

¢(E) ~ e-f'+e—lf'(ﬂl'/4f’)e(mE¢/:)ll-—l/21r In 4f/(g")}

X cos ["% ui + fu, — muge +1-:’—:1n4f(g’)j| ) (59)

where w, = u. -+ %,. We emphasize that the
analyticity in the upper half-plane is independent
of ¢ and is found in the ¢ = 0 limit as well. Only
when ¢ # 0, however, can we translate the trans-
form contour freely through the upper half-plane,
neglecting the contributions from the vertical inte-
grations at the ends. This ability to translate
guarantees formally that ®(£) decreases faster than
any exponential in £ In particular, we see in (59)
that both of the first two factors exhibit such
behavior, that is decrease like ¢”**". Thus, we learn
that with ¢ # 0, both ®.(¢) and ®.(w) decrease
faster than any exponential, due to the presence
of the convergence factors e™*" = ¢™**"” and ¢™*“’.

Our immediate interest is the ratio of the two
D functions. Using (59), we find

€
D(—ve) ~ e_"”(v)"’("'"2")(3(’""/')“'(”’" In 4f(g%))

D(—»)
cos [T(lnv + € lny)]

X cos [¥(In »)] ! (60)
¥(lns) = —Tuh + elnsu, + % In 4§(5%),
which for high » implies,
8(—7) ~ a(—) cos (¥(In ») + eu,(Inv)] 1)

cos [¥(In »)]

The oscillatory & gives better defined equations
than « itself. This is the nature of the ¢™*“" con-
vergence factors. Notice that &(») contains ghosts,
that is, poles near » = — =, from the zeros of
cos [¥(In »)] in its denominator. Thus, the integral
[ @ D, is well defined only if D, develops zeros to
cancel these, which, of course, it does. We discuss
these ghosts later.

We might have anticipated that multiplying
®(w) by e *“" corresponded to a high-energy regu-
lation process: notice that the substitution

Blw) — q)(we-iae(m))’ 1>8>0;
ew) = {+1, >0, ©2)
—1, w < O’
results in
ettt e—iu'e(u)e—s“', (638-)
+ o
Bwe 5] = f e =0e 1) dg,  (63b)
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which links the e *“" factor with a curious high-
energy (¢ — + «) regulation.

We emphasize that since we have shown the
convergence factor prescription to give the correct
right and left discontinuities, all the structure
discussed in this section is naturally implied in
the problem. After we get some more feeling for
the solutions themselves, and solve the inhomo-
geneous equations, we shall make some final com-
ments on the convergence factor.

High-energy behavior of D(») on the left

The convergence factor prescription yields the
efree well-defined (19) for D(y). What is its high-
energy behavior on the left? The third-order pole
at 2 = 0 dominates again, and we find

B(w) ~ exp [(—7i/m)e(Re w)(w® — imw)

+ (w/m) In4f(g7)]. (64

Thus, the integrand has two saddle points at
wp = —ur =Ty I1 fm + 5 1n4f(g’) (65)

Since ®(w) decays exponentially for 0 < Imw < 3m»
IRe w| — «, we can translate the contour up to
Im @ = Im w, with inpunity and use the method
of stationary phase to obtain the asymptotic be-
havior of D:

D(—») ~ 201

X cos [:—rtu'i —usIny — % 1n4f(g2):l
(66)

e = -;%—r]nv+%ln4f(g’) = Rew,.
Notice then that the integral [~ « D goes like
I »** cos (In* » + ---). We found above that
there are convergence factors in both « and ¢,
so such integrals in » space should be taken as
7 v cos (In® v + ---)e~*™" which, again, has
a finite smooth limit in e.

Asymptotic behavior in the physical region

Far to the right, writing the integrand of (43a)
as ' 7+ “'® we find

o, ) = ot — (m®/m) + (w/m) In 4f(g") (67)

from which we find a saddle point at &, [see (66)].
There is also a negative saddle point, this time off
the real axis, which is dominated by the contribution
from @,. The method of stationary phase along the
real axis yields, dropping all constants common
to N and D,
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Dy + o) ~;’; exp iZ, -

-2 -
- TRy | @4
Z=a,Iny— m+m1n4f(gz)

mlnv

— ity Doy g 4 RAD,

4rm

A similar a.nalysis on (42b) yields the explicitly
unitary amplitude (N/D)

A@) ~ +i cos Ze~*?.
Opposite sign of the input

(69)

Before going on, we want to note that the general
technique can be used to find a solution for f(g*) < 0
as well. We find on evaluation of (14) in this case,
simply (39) with

(iw/m) In f{g?)

e __)e(i'm/m) lnl!(y’)letra/m

(70a)
depending on the branch we choose for In (—1).
Clearly, to maintain the reality of the D function,
we must choose the linear combination of these
two solutions

elia/m 1 116D ook (s /m). (70b)

[Having ®(w) = ®*(—w*) guarantees a real D.]
The ¢*" oscillation (with the convergence factor)
defines this solution as well! It is a general feature
of these equations that solutions exist for either
sign of f(g°).
B. INHOMOGENEOUS N/D EQUATIONS

As discussed in Refs. 1 and 2 in order to guarantee
(in the W theory) that the Born term appear
explicitly in the iterative solution of the N/D
equations, we want to write them with one sub-
traction at threshold in & and D, with the sub-
traction constant in N set to zero in all partial
waves. The method proposed above for the solution
of the homogeneous equations can easily be extended
to this case. Consider the relativistic inhomogeneous
equation for the D function in this case in the

“most singular’” approximation
© 7 ot
D =1+% [ a(=v) ID( ”)d” m(”) (1)
0

vy —
[i.e., we have taken, just as before, o(v) = 1, and
let the left cut come up to threshold]. The substi-
tutions
a(—») = f(g"W"; D(—») = 3@), v=¢, v>0 (72)
yield

() =1 +f(0) f"’ """P(n)(z -

£ dn.

73)
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It is clear that an attempt to solve (73) by iteration
yields a termwise divergent series. Thus, we expect
the solution to be singular at f(g°) = 0.

We present here a general method for the solution
of the class of inhomogeneous integral equations

o =1+ [ KG— e dn, (9

In Fourier transform space this corresponds to an
inhomogeneous finite difference equation

) = 3w) + K@) + im). (75)

To solve this equation, we guess a ‘‘variation of
parameter’’-type solution of the form

) = Pr(WG). (76)

where ®4(w) is the solution of the auxiliary homog-
eneous equation,

&y(w) = K(w)Pulw + im). W)

This is soluble by our previous method. On substi-
tution of (76) into (75), we find that G(w) satisfies
the “Green’s function’ difference equation

Gl + tm) — Q) = —37'(0) §(w) (78)

as long as ®;(0) is finite and nonzero. (We find that
this is generally the case.) This is algebraic in
Fourier transform space with the immediate solution

G = 2@ [T ‘i’fi (79)

As in all Green’s functions, we have a choice of

three ways to go around the pole at « = 0. Thus,

we have three Green’s functions

dr e

206 =P [ E L

= 2L coth = (w + 1¢), (80a)
+otie d —|zw

¢E(0)G*(w) - ‘/"’Q*I.G é—_ 1 mz

= % csch — (w + ie* ™. (80b)

Which of these solutions to use in any particular
case is clear on demanding that the final ®(w) have
the symmetry property ®(w) = ®*(—w) for real w
(to guarantee the reality of the D function). For
example, if ®z(w) comes out symmetric, i.e., $5(w)=
&%(—w), then we clearly want to multiply by the
symmetrical Green’s function

Gr@[Gr() = G¥(—w)],
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because this will maintain the symmetry of &(w).
If ®z(w) comes out asymmetrical, and sometimes
it will, we want to use one of the “asymmetrical”
Green’s functions G, ().

We notice that (80) solves (78) only if we agree
to approach singularities on the boundary of the
strip from within, ie, if we interpret (78) as
Gl + im — i) — Gw + 16 = —d5'(0)6(w).
This prescription is inherent in the entire Fourier
transform technique. In particular, it tells us that
periodic functions with no singularities on the
boundary of the period strip satisfy simple perio-
dicity relations like P(w) = P{w + m), but if
the periodic function has a singularity on the
boundary of the strip, it satisfies an inhomogeneous
Green’s function relation like (78). This is an
important distinction in our later discussion of the
uniqueness of the solutions.

Both ®4(w) and G(w), and hence ®(w), satisfy
(11a) by explicit construction. If condition (11b)
is satisfied, we find by inverse Fourier transform

8E) = 5~ 25'(0) fw 't du cof,hl (@ + o)
X exp{

B} %f—e_——[ [ d&e'“an(w)]}, 81)
where

QH(O) = exp {[ dx mz

1 —e¢

X [ | t do & an(w):l} (82)

and we have assumed G(w) = @»(w) for simplicity.
In the case of interest, Eq. (73), we find the

difference equation

Bw) = 8(w) — f(g°) esch® w(w — 1P + im). (83)

Necessary in the derivation is the identity

f+m e~ gt

=&

—-w @ —_

= 7’ csch® r(w — 1¢).  (84)
The method of solution outlined above leads to
®4(w) = exp {’—“’ In 4/(¢*)
e-—c‘zw
+2Pf.., (1 — e —e'"}'
To obtain this, one needs the identity®

(85)

2 f dew ¢ In [csch 7w — i¢)]

4

m + (2rIn4 + 2z%) §(x)

=P

» See Appendix I.
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or
f dw e“ In [— csch w(w — 7¢)]

2
=P p (86)

-
This implies a choice of branch in the logarithm.
Other choices correspond to other solutions. We
discuss the multiplicity of solutions to these equa-
tions in a later section. The fact that ®y(w) =
&%(—w) requires the use of the symmetrical Green’s
function Gp(w), and we obtain

D(—’V) = :Z%n_ QEI(O) ﬁ dwel'w In»

X coth % (w + 7€) exp I:%o In 4§(¢”)

+w@ e-—izw ]
e (1 —e A — €™

(using a convergence factor to prove that (11) is
+ oo dx

satisfied), where
®4(0) = exp [2P f_ o ] (88)

is indeed finite and nonzero. This is true because
of the small bonus in analyticity evident in (87):
&,4(w) 18 analytic in the strip ~1 < Im o < m,
thus preventing ®z(w) from being singular. In
Appendix 11, the rather surprising identity,

exp [_21) [—j (1 — e"‘%yil - e"‘):l
=m=&;(0) (89)

is established, which simplifies (87). Actually,
because ®5(0) is a constant, it will appear in the N
function as well, and thus will divide out of the
amplitude. Again, the fact that ®(w) satisfies (11)
depends on the appearance of the exp (iw®) oscil-
lations (and the associated convergence factor).

Finally, we mention that, just as discussed above
in the homogeneous case, the amplitude can easily
be shown to have the correct discontinuity relations
(thus justifying the convergence factor).

The inhomogeneous once-subtracted NR equa-
tions

+ 2P 87

8 [° Do(s"au(s) ds’

Ny == | P P— Dq(9)
_ s [* No(s)(s)} ds'
- 1 - 1I'./; sl(sl — S) (90)

can be solved in much the same way as the rela-
tivistic. With the substitutions
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a(—8 = —f(@)";  Dy(—9) = 20,
NO(S) = X(E)’ 8§ = 325: §>0,
we find the coupled difference equations for N and D

oD

&) = 8@w) — 7 esch ir(w — tex(w + 9), (92a)
x@) = +if(g°) esch jrw — ¢
X ®lw + 1(m — 1)]. (92b)

With (92a), we understand the sufficient condition
on x(w) that the inverse Fourier transform contour
be translatable within the strip 0 < Im 0 < 1
[just like (11), but only over this strip]; with (92b),
we understand possible translation of the contour
of the inverse Fourier transform of ®(w) through
the strip 0 < Im & < m — 1. The resultant equation

for ®(w)
B(w) = 8(w) — 2if(¢°) eschr(w — 1) B(w + tm)  (93)

yields, using our general procedure for solution of
difference equations of this type

P(w) = 2Lm &' (0) coth ;—; (@ + i) exp [%’ In 4f(¢°)

+ @ dx e—c’wz
+P f_m z(1 — ™)1 — e—’)] ! 94)
4’1_11(0) = m*’

which is analytic in the strip —1 < Im o < m.
Again, Gr(w) is used because ®y(w) turns out to
be symmetric.

The difference equation (93) for D is true only
in the sense of an analytic continuation in «. That
is, the actual D function integral equation

2/(g") [*° _€"e(n) d
é(&) = 1 + 1l'2 ‘/;Q 62(,,_5)(651_7,, _;7 1)

is not in this case directly Fourier transformable,
in that the Fourier transform of the kernel is
divergent. The translation

(95)

esch 37 (w — e + 7) = —1 sech }rw,

involved in the derivation of (93) from (92a, b),
corresponds to evaluating this divergent Fourier
transform by analytic continuation; that is, one
writes

—~itu

te

L) = f
W=/ Tl
and calculates L(w + 2¢) by first evaluating the
integral and then continuing. The proof of the
validity of the analytic continuation is that the

de (96)
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solutions obtained under its assumption explicitly
satisfy the discontinuity relations, as discussed
above in the homogeneous case.

We might have expected that if our method
yielded a solution of the difference equation (93),
the results would satisfy the original integral equa-~
tions, because (93) automatically guarantees trans-
latability of the inverse Fourier transform contour
of ®(w) at least through the full strip 0 < Imw < m,
which is more than the sufficient analyticity de-
manded in (92b).

Alternately, one can bypass (93) by merely
looking for solutions to (92a, b) directly in the
form

Pa(w) = exp [Fa@)], xal) = exp [F,()].

This leads directly to (94).

Moreover, in the cases of both the NR and
relativistic inhomogeneous equations, the functions
®(w) are analytic in the upper half-plane. For
example, we find in the former that

o7

(98)

which just cancels the pole of coth ww/m. The
difference equation for &z

ginh w(w — 1¢)
—2#if(g")
guarantees the continued cancellation of the poles

of coth ww/m higher in the upper hali-plane. In
the relativistic case, we find

By(w) ~ (@ — Tm), nearw = im,

Pl + im) = Pplw)  (99)

@g() ~ (@ — im)’,

(100)
. sinh® — 4
Byl + 1m) = ——%—ﬁ Bp(w),
which damps the poles of coth ww/m even more
strongly.

In summary, we have found @®(w) analytic in
the upper half-plane for all four cases, that is NR
and relativistic, homogeneous and inhomogeneous.
Also in each case, the lower half-plane is analytic
except for an infinite set of poles of increasingly
higher order along the negative imaginary axis.

High-energy behavior

We can now study the high-energy behavior of
the solutions to the inhomogeneous equations. The
high-energy (» — — =) behavior of the relativistic D
is dominated by the contribution from saddle points
at large |w|, just as in the homogeneous cases.
To find these, we need the large |w| behavior of
the &(w) corresponding to Eq. (87). This is domi-
nated by the third-order pole at z = 0:
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—fzw 7rlw2

+®
dz e
m

ez (I — €A — ™)

S T . . U A TP

2P

6 26

a8 w — o, Using this and noting that for large
values of w, coth (r/m)(w + z¢) ~ 1, we find saddle
points in the integrand of (87) at

oo = =2 i(m=1) = bHET). (102
T
Because the pole of the coth is below the real axis,
we can translate the original contour up to Im w =
m — %. (The integrand is exponentially damped at
the ends of this substrip, so that the convergence
factor is not needed.) Using the method of stationary
phase along this new contour to pick up the con-
tribution from the two saddle points, we find

D(—») ~ m*¥"V gin [J(., &) — 1n],
J@., é) = 5’+é - (T/m)‘:’i
— (@/12)[m + (1/m)],

which is very similar to the sort of high-energy
behavior found in the homogeneous cases. We see
that the inhomogeneity is oscillated to death-at
high energies.’® This is what makes it possible
now to obtain N by doing a Hilbert transform
over aD!

At no time in this paper have we considered
the equation for the N function itself—rather we
have insisted on calculating it from D. This is
not just whimsy; it is a necessity. Any attempt to
obtain the equation for N itself, in either the
homogeneous or inhomogeneous cases, and especially
in the latter, necessitates an (invalid) interchange
of integration order, resulting in a divergent struc-
ture like [ «(s) ds. The remark applies in o space
as well. That this interchange of integration order
is not allowed (due to the nonuniformity of con-
vergence of these oscillatory integrands) is implicitly
demonstrated in our explicit construction of N.

This damping of the inhomogeneity at high
energies also regulates the iteration scheme to
correct N, and D,. For example, the “first-iterated”
solution of

vo -1’

(103)

(:’.'. = Re Wy,

av’
V’ bl
d 4

— NO)o®)

’
y —

D)),
(104)

D(11)=1—71'_./:l

10 Presumably that, in much the same way, replacing
PR — gt — g /2 + ... = g?cos g% suppresses the high-energy
behavior of the first term.
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is, in our sense,

-1
N =2 [ &

> Do()alv'),

_.cl’

1(")"1_—f L

Notice we are iterating around D,, not 1! It appears
at first glance that the next iteration for N will not
be finite, because of the inhomogeneity in D,

(105)

> N.()p).

1
N.G) = = 57 al’)
1t o,
—1? —o v'-—-va(y)
° 4
xfo 7 L NG e().  (106)

We emphasize that actually the inhomogeneity is
no more dangerous here than in the N,D, equations,
and that the sum of the two integrals in (106) is
quite finite. To show this, we need only rewrite (105)
in a form that absorbs the inhomogeneity into D:

N.() = NoG) + ANo(),  Dy() = Do)
_ 1 [" AN & o)
T Jo vV — ! (107)
aNyG) =1 [ gy Dal) L)
T J-o bl 4
_ _1_ Do(”')“o(”/) &'
T J=y V’ -~V
We see that the higher iterations, e.g.,
N,() = NoG)
1 dv'’’ AN
R A g vf - 0(” . o0") (108)

are all finite by virtue of the oscillations in D,.

It cannot be overemphasized that the unitarity is
here generating its own regulation, and one is
tempted to conjecture that the true theory may
have a self-regulating mechanism of this sort. It
is strongly suggested here that the requirement of
unitarity can, and will, always obviate the need
for regulator procedures.

Opposite signs of the coupling

In the previous section we studied particular
signs of the coupling, i.e. (R = relativistic),

R: ao(—») = +f(g°)W";
NR: _f(g2)8}(m—l),

(109a)
ay(—8) =
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where f(¢*) > 0. In this section we want to solve
the equations with the signs reversed, i.e.,

R: ao(—3) = —f(gW";
NR: a(—8) = +f(gH)sd"»

and f(g°) > 0. We see that the essential difference
is only to break the symmetry [®x(w) = $%(—w)),
found for the inputs (109a), thus requiring multi-
plication by a corresponding antisymmetric G(w).

In the relativistic case, the input (109b) yields
the difference equation for the D function

®(w) = 5() + f(g°) esch? (e + 1B + im), (110)

which differs from (83), the case with the opposite
sign of the input, only in the sign of the second
term on the right. The general procedure goes
through as above, and one finds

7 () = (111)

where the (—) superscript corresponds to the
negatively weighted input (109b) and the (4) to
the positively weighted input (109a). ®*’ (w) appears
explicitly in (87). A quick way of getting (111) is
to guess a &7 (w) of the form &5’ (w) = &, L(w).
Substituting into (110) and using (83) gives

L) = —L(w + im) = L) = ¢***/™.

To obtain a symmetric ®(w), we need multiply
®5(w) by G:(w). Finally, in this case then, one
finds

(109b)

(+)( )eiru/m

112)

P(w) = ¢ csch _;r_z (w + teetio/m 1masien

* dx e ] (113)

X exp [2P I T

The situation is the same in the NR case, corre-
sponding to the input (109b). We find

5 = e | 2 afg)

P f+m e—dwz ww:]
R S s (e e
So that to obtain a symmetric ®(w), we need
multiply by G, (w).
‘We mention that this method of patching together
a symmetric ®(w) is different from that used in
the homogeneous cases above, but that method
works here as well. For example, the two forms of
®4(w) given in (111) could be added to form first
a symmetric ®5(w), then G»(w) could be used; this
would result in a solution identical with (113),

(114)
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except that
esch % (@ + 4¢) — cosh’ }n"i esch % @+ 19. (115)

Clearly, the solutions we are finding are not
unique (for either sign of the input). We again
postpone the discussion of the multiplicity of the
solutions. It should be mentioned, however, that
we are taking the trouble to exhibit these particular
solutions explicitly [i.e., Egs. (87), (114)] because,
as shown below, these are, in fact, the iterative
solutions of the equations (which we feel are the
most physical.)

The amplitude far to the left: the ghosts

We have noted in all our solutions that D(»)
oscillates for v — — «. How do these zeros affect
the amplitude? Since we expect the solutions to
maintain «(r) on the left, we are first tempted to
expect that at these zeros the N function vanishes
as well. We see that this is not so and that even
while maintaining Im N = aD, the solutions involve
an infinite number of ghost poles near » =

We discuss explicitly the relativistic homogeneous
case, but essentially identical arguments can be
given in each of the other cases. From (45), we
see that the N function is dominated asymptotically
on the left by

— 0,

. ke
NG ~ 55 f ¢ do.  (116)
Using (101), we find saddle points in the integrand
at w. and w_, as shown in Fig. 6. Even though
e’ ™" is increasing in the lower half-plane, the
behavior of e**“’¢™*“" allows us to translate to
Im & = —3im and pick up the contribution at w_,
which dominates anything else from Im w > —1im
(such as the contribution from the poles along the
negative imaginary axis). We find

Wi o G i

Imw

(117)

Fra. 6. The saddle points in the integrand of N(re‘~).
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[which is exponentially increasing for & > 0(1)],
and thus, using (66),

A(—») ~ w"f(g")e *? sec Z, (118)

The N function fails to cancel the zeros of D, which
persist as ghosts in the amplitude. (They correspond
to particles with large imaginary masses.) The
asymptotic form (118) explicitly maintains Im N =
aD, but because of the ghosts, Im, A(p) = a@)
is not maintained. In particular, the imaginary
part of (118) has, in addition to the input, an
infinite series of & functions. Thus, just as in the
g° > 1and g° < 0 cases of the one W exchange N/D
equations discussed in Ref. 1, no solutions exist
to the partial wave dispersion relation itself.

In these more singular cases, we find the ghosts,
and hence the inconsistency of the partial wave
dispersion relation, regardless of the sign of the
input: the solutions for f(g>) — —f(g°) are obtained
by the prescription (70b) in (87); we obtain the
same behavior as v — 4~

N(—v) -~ ta(—v)e’? )
D(—v) v ™ cosZ

Similarly, the ghosts are present in every one of
our homogeneous, inhomogeneous, relativistic, and
nonrelativistic solutions. As pointed out earlier in
the chapter, these ghosts are expected on general
grounds. The nature of the argument given there
(depending only on the asymptotic behavior of
a(v) and unitarity) indicates, in fact, that the
ghosts are expected to occur independently of
the number of subtractions.

Another way of saying all this is the following:
there exists no Hilbert-transformable solution to
the problem of analytically continuing to the right,
in a unitary fashion, an imaginary part which goes
asymptotically on the left like a(—») ~ M™, m > 0.
(Our solutions, because of the ghosts, simply do
not satisfy the partial wave dispersion relation
for A = N/D with the original input.) If a solution
to the problem of continuing these inputs to the
right exists at all, it must then be non-Hilbert-
transformable; that is, it must exhibit exponential
increase at «. We remind the reader that very
similar conclusions were reached in the m = 0
(vector-meson exchange) case discussed in Ref. 1.
We emphasize that the ghosts, and hence the
exponential increase of the “true” solution, are
expected on general grounds. We do not attempt
to find this nondispersive ‘“true” solution.

A simple calculation reveals that the residues
at these new poles are opposite in sign to the sign

v > 0.

(119)
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of the input. Thus, we see that unitarity generates
the ghosts in an attempt to subtract away the
worst part of the asymptotically ill-behaved input.
(The infinite series of § functions gives a kind of
oscillatory nature to the left-hand cut.) This is
generally the reason for the appearance of either
bound states or ghosts in solutions to the N/D
equations.”” As discussed in the section on the
physical meaning of the convergence factor, these
ghosts were actually introduced in the “modified”
input a(v), and the D function had to develop
these zeros just to cancel those of the input.

If the calculations of Bjorken and Goldberg'® on
the exponential potential have any relevance here,
the appearance of the § function modifications of
the original input might be taken as an indication
of an oscillatory left-hand cut in the true theory:
theirs and similar calculations, e.g., the calculations
in which “dynamical” bound states arise in the
solutions (which also ‘“modify” the original dis-
continuity relations), have hinted toward a sixth
sense for the N/D equations, in that when an N/D
calculation yields a modified input in one way or
another, one should tend to take the modified
input (original plus § functions) more seriously
than the original itself. We feel that this is an
attractive viewpoint.

We emphasize that the ghosts are very far out
to the left indeed: we found the oscillations by
making the assumption that

276, = wln v + In f(g°) > 0.

This is so, provided [»| > If(g°)|7*'". In the weak
interactions, we know from Ref. 1 that a(—») ~
(@)™"*v", so, remembering » is scaled in W masses,
we are finding the zeros in the region

| > (1/¢°)(W masses)’. (120)

The ghosts are extremely far from the physical
region and stay there for higher m(!), thus giving
our scheme some chance for accuracy in the physical
region.

The e-convergence factors and definition by analytic

continuation

Looking back, we find that the convergence
factors have been used essentially in two places
only,

(a) to prove formally that our D functions solved
their integral equations, and

11§, C. Frautschi, Regge Poles and S-M atm Theory (W. A.
Benjamin Company, Inc., New York,

( 12 J. D. Bjorken and A. Goldberg, Nuovo Cunento 16, 539
1960).
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(b) to define N on the left—that is, N on the
right and D, as given in (42), are quite well defined
without convergence factors.

We find it extremely interesting to note that, at
least in the case of (b) above, the convergence
factors can, and in fact should, be interpreted in
terms of an exactly equivalent analytic continuation.

Consider for simplicity the (well-behaved) D
function in the relativistic homogeneous case (v > 0),

1 +@ .
D(—) = f () d,

[8@)| ~e'' ", (121)

According to (45), we can obtain the N function
on the left from the knowledge of D(v) and D(ve***).
Of course, when D(ve’**) is written in the Fourier
transform representation,

+o

eiw In ,3_2'-“’@(0)) dw

—c0

D(—w™) = ;1; (122)
its integrand has an exponentially increasing mod-
ulus (w — — ). We know that we can define (122),
even with this pathology, with a convergence
factor. Actually, however, what we should do to
find D(—»e’"") is to evaluate the integral repre-
sentation (121) and then continue the evaluation
to »e’"*. We can do essentially this by rotating
each half of the integral in (121) down by =/4 to
the new contour C’, shown in Fig. 7. We obtain

D(—») = %;{GXP (—%im) /:o exp (iRe™*'” In»)
X ®[R exp (—%in)] dR + exp (+%in)

X fo " exp (—iReH" In »)B[~R exp (+1in)] dR}-
(123)

To do this, we need notice that ®(w), although not
completely analytic in the lower half-plane, has
singularities only on the imaginary axis. The fact
that ®(w) ~ ¢****> allows us to drop the con-
tributions at infinity. Along C’, we can be sure that
®(w) is damped very powerfully by the usual ¢”®
coming from the ¢ **““’*’. We emphasize that
this rotation is valid without any convergence
factor because D is convergent as it stands. Now

jlmw

- Re w

Fie. 7. Alternate in-
verse fourier transform
contour.
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we can continue (123) to »e’™*, obtaining quite
rigorously,

D{—v exp (2x1)]
1 1. “ . —iir
=3 {exp (—4im) f exp (iRe™*'" In»)
14 o
X exp (—Re *"2r)®[R exp (—ir)] dR

+ exp (+%in) f exp (—iRe**'™ In v)
(1]

X exp (+Re***2m)d[—R exp (1im)] dR} , (124)

which is quite convergent, the exp (—R®) of &
killing the exponential increase of the exp (4+Re?* "2r)
factor.

We wish to make two important points here.
First, notice that, in the form (123), D(—») has no
singularity at » = ¢'~, although it seems that the
original form (121) of D might cease to converge
at just that point, since that is where the modulus
of the integrand just begins to grow exponentially.
This is a very strange analytic continuation then,
because, although doing an integral usually analyti-
cally continues it beyond its original region of
convergence, there is always a pole or some other
singular reminder that the integral representation
ceased to converge at that point. Here we find no
such singularity! This suggests that the integral
representation (121) was actually well defined above
» = ¢'". We have not tried to prove this rigorously,
although probably it could be done in the sense
of distribution theory. Such remains to be investi-
gated. Second, we note that the form (124) for
D(—ve’™*) obtained by “doing” the integral (121)
and then analytically continuing it, is exactly what
one would get with an e-convergence factor used
directly on (122). Consider

o
D(—vw™") = 1%; j;w e e B(we " dw.  (125)

We can ‘“fold” the contour to C’ in this integral
as well; this time the convergence factor damps
out the contributions at infinity. The result is
exactly (124).

Thus, we have interpreted the convergence factor
in terms of an analytic continuation, at least in
the case of (b) above. It is clear that the two methods
of defining such pathological structures as (122)
are completely equivalent. On the other hand, we
have not yet been able to use an analytic continu-
ation to prove (a). At any rate, since both methods
give the same (correct) results, we can only conclude
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that both are implied naturally in the equations.

In summary, we comment that the unitarity
requirement can be thought of then as having
generated its own regulation—by spawning the
very rapid e'“’ oscillations. Two particular forms
of this regulation are the convergence factors and
the analytic continuation method just discussed.
Thus, no F-P regulator limit is really needed. It
cannot be overemphasized that the solutions we
obtain indeed solve the original equations, whereas
the solutions of F-P do not, in general, solve theirs
(after the regulator limit). This is a strong indication
that the requirement of unitarity can, in general,
always generate its own regulation in so natural a
manner as found here; we feel that unitarity may
be the key to future regulator-free calculations in
the weak interactions.

Uniqueness of solutions

As anticipated above, our solutions to the N/D
equations are not unique. If ®(w) is a solution of
the homogeneous difference equation whose inverse
Fourier transform solves the integral equation in
space, then the inverse transform of &(w)®@{w) does
also, provided @(w) has the following properties,

(a) @lw) = Gw + im),
(b) G(w)P(w) must satisfy (11),

(¢) Gw) = @*(—w™).

(126)

The first proviso implies that @(w) has no singu-
larities on the strip boundary; as we saw above,
functions singular on the boundary satisfy a 8(w)
equation. Proviso (¢) guarantees the reality of D
on the left.

How much ambiguity does this leave? Functions
like ¢*™"“/™ are excluded by (c). Superdamping
factors like e™°***27“/™ are excluded by (b); this
function has a terrible singularity like e® “®°“ at
Im & = 3m. Requirements (a) and (b) together,
eliminate elliptic functions. Requirement (b) elimi-
nates functions like sech 2ww/m, which have singu-
larities in the period strip. Proviso (a) eliminates
functions singular on the strip boundary, e.g.,
1 coth ww/m, because these functions really satisfy
s-function inhomogeneous difference equations like
(78). We find then that the ambiguities can be taken
in the form

Cn(w) = {coshg@lrg, cosh’w,isinhzﬂe, }
m m m

(127)
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and sums and products of these. Despite the ex-
ponential growth of the ®{w)’s (at large |w|) asso-
ciated with these factors, the exp (iw’) oscillations
will define the solutions, as discussed above.

In the case of the inhomogeneous equations,
there are ostensibly two sources of ambiguity. (a)
The first is that, to our direct exponentiation-and-
Fourier-transform solution ®°"7"(w), one can add
any solution of the homogeneous equation. The
discussion of the ambiguities then follows the
previous case. (b) A second source seems to be
that one can multiply the solution to the homo-
geneous equation obtained directly by our exponen-
tiation-and-Fourier-transform technique [®5°7(w)]
by the functions @, (w) before applying the Green’s
function. It is shown in Appendix IV that the
functions in the set @,(w) which vanish at @ = 0,
e.g., 1 sinh 27nw/m ean effectively be omitted from
the set in this case, in that no new solutions, above
and beyond those obtainable with the cosh-type
factors, can be obtained with their use. In our proof
below that ®°“7(w) is the solution in coordinate
space which corresponds to the iterative solution in
energy space, we are thus able to consider the set
@.,(w) as being only those functions with the prop-
erties (126), which satisfy the constraint @,,(0) = 1.
(This particular normalization is without loss of
generality, as the application of the Green’s function
immediately divides out whatever normalization we
choose,) Using the @(w) in this sense then, we find
finally that, if the inverse Fourier transform of
G(w)PE"T(w) satisfies the original integral equation,
then so also does that of

Bw) = Qn(WGW P "W). (128)

This is because the §-function inhomogeneity of
the Green’s function equation only ‘“senses” the
value of ®5(w) at w = 0.

Actually these two ostensibly different forms of
ambiguity are entirely equivalent. We can show
this most clearly by simply constructing corre-
sponding $(w)’s and @,.{w)’s in terms of one an-
other. For example, given a solution @, (w)®*"” (w),
we can construct it as the sum of ®*""(w) and a
solution of the homogeneous equation by taking
this latter to be

Py(w) = [Qmlw) — 11877 (w). (129)

Using the inhomogeneous difference equation [e.g.
(83)] and the facts that @(w -+ tm) = G(w), @0) = 1,
it is easy to show that the right-hand side of (129)
indeed satisfies the corresponding homogeneous
difference equation.
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On the other hand, given ®4(w), one can calculate
the corresponding @{w) through the formula

aw) = 1 + [x(w)/2*" ")) (130)

We can easily show that the right-hand side of (130)
has all the expected properties of @,(w): using (in
the relativistic case)

Byl + 1m) = —[f(g")]7" sinh® mwdy(w), (131a)
3 T(w + im) = —[f(g")] " sinh® 7®" " (w), (131b)

it follows that G{w + m) = Qw). [We have
set sinb’zre 8(w) to zero in (131b).] It should
be noted that (131) foliows only because the kernel
csch® 7w(w + 7e) is free of zeros in the period strip.
To prove that the value of the right-hand side of
(130) is unity at @ = 0, one need only notice that
& T(w) ~ w ! near w = 0, while all ®4(w) go to
a constant or zero at w = 0. This latter follows
from noting that ®E77(w) goes to a constant at
w = 0, and there are no members of @(w), as given
in (126), which are singular at the origin. Finally,
we see that @(w) is analytic in the period strip.
This follows from the analyticity of ®4(w) and
3" T(») in the period strip, and the fact that
®*FT() is free of zeros in the period strip [which
is guaranteed by the explicit exponential form of
QEFT (w>]’

Thus, we have explicitly established the equiv-
alence of the two types of ambiguities.

The asymptotic behavior of these solutions ecan be
investigated as above with the method of stationary
phase. They all have the same wild oscillation for
large |»|, and one finds that essentially the only
change is that the power of » multiplying the
oscillations in N and D increases as the corresponding
@ (w) become more strongly exponential at w = .
These powers cancel in the ratio, however, and the
asymptotic amplitude is, interesting enough, the
same for all @(w). In particular, all the solutions
exhibit the ghosts discussed above.

C. THE SOLUTION THAT SUMS THE
ITERATIVE EXPANSION

In the relativistic case we have presented two
ways (homogeneous and inhomogeneous N/D) of
constructing a unitary amplitude from these asymp-
totically ill-behaved inputs. We found an infinite
number of solutions in each of these cases. Out of
this multitude of solutions, which one should we
pick as being most physical?

We make our choice on the basis of our desire
to use the dispersion methods to sum as much of the
ordinary perturbation series as possible. According



1244

————— +

e 14 e v e 14
(a) {b)

Fre. 8. Simple inputs for the N/D equations.

to this criterion, it was pointed out in Ref. 1 that
the N/D equations with input like Fig. 8(a) or
Fig. 8(b) should be written (in all partial waves)
with one subtraction at threshold in N and D, with D
normalized to unity at threshold, and the subtraction
constant in N set to zero. In this way, because the
Born term (1W exchange) can also be written as a
Hilbert transform once subtracted at threshold,
with zero subtraction constant, we formally include
the Born term itself in the iterative solution of the
equations. [The first iterated N function will always
contain the Born term. More particularly, with
Fig. 8(a) as input, the first iterated N function is
the Born term; for inputs like Fig. 8(b), the first
iterated N function contains the Born term formally.]
The remaining question is, from among the infinity
of solutions to this particular form of the N/D
equations, how do we find the one that sums the
iterative expansion?

We do this by regulating the N/D equations in a
simple way, so that we can discuss a perturbation
expansion with finite terms. Although we still find
an infinite number of solutions even in the regulated
case, there will be only one of these, the direct
exponentiation- and Fourier-transform solution,
whose perturbative expansion coincides with the
(regulated) iterative solution. The (smooth) infinite
regulator limit of this solution is our above-exhibited
solution ®*"7(w). The other solutions of the regu-
lated problem go over smoothly, in the regulator
limit, to our “other” solutions. The crucial property
of *7(w), which singles it out in this way from
all the other solutions, is that ®;"7(w) is the only
solution to the homogeneous equation which is
free of zeros in the period strip. OQut of all the four
families of solutions exhibited in this paper then,
we feel that the solution ®*"”(w), because it is the
smooth regulator limit of the regulated iterative
solution (in energy space), is the most meaningful
solution.

Our method of regulation is to consider Eq. (73)
with the inhomogeneity cut off above A > 0:

BE N =90 — 8
+ f(::) f: — ;iﬂ_ S (1= Dee(n, M. (1320)
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In coordinate space this goes over to

e—u’)\w
i ¥ i @)
X esch’ n(w — 1 ®(w + tm, N). (132b)
Before going any further, observe that the term-by-
term Fourier transform of the iterative solution of

(132a) is not, in general, the iterative solution
of (132b):

d(w, \) =

a, N =00 -9+ 10 [ Iy g

f(gz):lz +o@ dn emq _
+[rz [ a0
A .
x [ B ek, 3
e—i)\w .
Plw, \) = il 0 + 1g)
thw _Am
X csch® w(w — te) m + [—f(A)
ei)\we2)\m
X csch® w(w — <) m + .- (133b)

We see that the Fourier transform of the first two
terms of (133a) yield the first two terms of (133b).
However, for A < o«

A
[ a-peoym as e, 138

so that the third term of (133a) is divergent and
has a divergent Fourier transform, while the [f(*)}?
contribution to (133b) is finite and has a finite
inverse Fourier transform. The fact that the iterative
solutions in the two spaces are not connected does
not bother us at all; we are interested really only
in the iterative solution in energy space, and have
no interest in the iterative solution in coordinate
space: each of the terms of the latter has a pole
in the period strip (from the kernel) and one can
show that so also does their sum. Thus, the inverse
Fourier transform of the exact iterative solution in
coordinate space does not solve the original integral
equation. It is clear then that none of the solutions
in w space considered here correspond to the iterative
solution of the difference equation. We also see
from (133a) that our regulation is not a very good
one because all the terms in [f(g°)]" (n > 2) are still
divergent. Still, this much regulation proves suf-
ficient to identify ®*“"(w, \) as the sum of the
(regulated) iterative expansion: it will turn out that,
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of all the solutions to (132b) (whose inverse Fourier
transforms satisfy the original integral equation),
there is a unique solution whose inverse Fourier
transform agrees to order f(g°) with (133a). [This
will be ®*77(w, A).] Thus, the higher-order terms
will not be needed to pick out the desired solution.

To see this, we find, in essentially the usual way,
all the solutions of (132b). This time we make a
slightly different factorization, leaving the f(g*)
dependence in the Green’s function:

$(w, ) = G, N)®y(w)
—csch® 7(w — 1) Pplw + im),

—iAw 1

(135a)
Pplw) =

e
Glw) = 2xi(w + €) (W)

Both of these are soluble in the usual way. We
exhibit the set of solutions in the following form:

1@ G + im) — (135b)

—lwz

Bw, \) = —Qw)®s "(w) f 2#1TfW

% /ﬁ-m do e-—l)\w eiz‘w
2mi & + te @(@) 85T (@)

(136)
where @(w) has the properties (126) and, as discussed
above, we take @(0) = 1; ®;""(w) is the direct
exponentiation- and Fourier-transform solution to
(135a)—i.e., Eq. (85) without the f(g°) term.

We can formally expand the set of solutions
(136) in a power series in f(g*)

2, N) = 3 (T2, N,
=0 (137)
B0, ) = T [ e
to - _—ira i3
X f ;lm we+ e @(w);'?”( %)
We see immediately that
Bo(w, N) = —e™/2xi(w + 1€ (138)

independent of @(w). All the solutions have the
correct term independent of f(g°), so that ome
cannot distinguish between them on this basis. Now
ask about &,(w, \). For which @(w) do the integrals
even converge? We can find this out by looking at
the analyticity in . First take @(w) = 1 (the EFT
solution). We know from our previous discussion
that #5377 (w) is analytic in the period strip with its
first zeros at the strip boundaries (on the imaginary
axis). This is guaranteed by its explicit exponential
structure. In fact, we know that ®5""(w) is analytic
in the upper half-plane (with a family of zeros along
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Fra. 9. Method of evaluating Eq. (140).

the positive imaginary axis), so that [®577(w)] ™" is
analytic in the upper half-plane except for a family of

poles along the positive imaginary axis at w, = inm,
n > 1. Further, we know that for large |w|
[@IE{FT(w)]—l ~ ee(w)(r/m)[iw’+w(m—l)l‘ (139)

Thus, we can close the contour above in the & plane,
picking up only the poles at @, as shown in Fig. 9.

The lowest-lying pole at w, = #m gives the
asymptotic behavior of the & integral for large z.
That is,

+ o - — AT izd
do e e —zm

r— @,

e 2o e B W) (140)
Thus, in the case @(w) = 1 (the EFT case), ®,(w)
converges but &,(n > 1) diverge. In the other
cases, i.e., G(w) # 1, we find a pole in the period
strip of the & plane. For example, in the case
@(w) = cosh 2nmw/m, there is a pole at @ = im/4n.
This allows the & integral to fall off no faster than
exp (—xm/4n) at large positive z. In all these cases
then &, diverges. Only the EFT solution converges
to order f(¢°). It is straightforward to show in
fact that'

égFT( )f dx —th xm

~ AT e.‘zu
x [ mara g W4
Am Ao
= —cscl m(w — Q) Pt
= el Y e )

whose inverse Fourier transform is just the second
term of (133a). This establishes that the solution
®*"T(w, N\) is the sum of the regulated iterative
expansion. This EFT solution clearly goes over
mthis, study

F(w) = ./‘_d_aie—iwzemz @
2r 2t w + te BEF T(w)

e—i)\a ec’zw

by first evaluating
—~fwA
1
2rilw + i€) PEFT(w)

and then continuing to find F(b) Since the integrals actually
converge, we are guaranteed the validity of the continuation
technique.

Flw —

im) =
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smoothly as A — o, into the EFT solution in the
unregulated case. The other solutions displayed in
(136) go over smoothly into the other solutions
in the unregulated case. Thus, we have been able
to show that ®"“7(w) is the smooth regulator limit
of the regulated iterative solution. For this reason,
as discussed above, we feel it is the most physical,
and should be used in physical applications of
the theory.

Nonrenormalizability of solutions

We have not discussed the behavior of the ampli-
tude near zero coupling. Because f(g*) and » generally
appear in the solutions as the product

In {[f(g)]"""} (142)

small coupling is linked with low energy. It turns
out that there is a logarithmic singularity at zero
coupling. These topics will be the subject of a
future paper. For now, it suffices to mention that
the solutions are clearly singular at zero coupling
[no perturbation expansion in f(¢*)]. For example, in
the case of the inhomogeneous solution (87), we
see that already in w space

-2—- coth =

" (@ + 49 exp [%’ In f(g’)]
£ +® df e—iEu

2rJw 1 — f(gH)e™

Zo G 8w + imn);  (143)
51;_[ e'“%e™ dzx.

D. SUMMARY AND COMMENTS

8w + tmn) =

We have solved the nonrelativistic, relativistic,
homogeneous, and inhomogeneous N/D equations
with the singular inputs that occur in nonrenormal-
izable field theory, and picked the single solution
we felt was physically most meaningful. It is the
direct exponentiation- and Fourier-transform so-
lution to the relativistic inhomogeneous case—
because this one corresponds to the sum of the
(regulated) perturbation expansion. Since the iter-
ation process systematically includes long-range
information, our program reduces some large part
of the weak interaction problem to quadratures.
The reader is reminded that in Appendix III we
do the integrals inside the final inverse transform,
leaving only one integration, the final inverse trans-
form itself, to be done. Thus, we can calculate
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nonrenormalizable, unitary, and dispersive gener-
alizations whenever an absorptive part, while not
itself divergent, has bad asymptotic behavior.

We hasten to repeat our awareness that the
terrible behavior of the inputs far to the left lead
to solutions that violate unitarity in the cross
channel; we know that such left-hand cuts are
forbidden for this reason, in a full theory, yet we
feel that the approach may still be valuable in
the physical region.

We want to discuss this in some detail in the
next few paragraphs.

As explained in Ref. 1, using the first N ladder
graphs as input into our program simply guarantees
the exact ladder graphs up to that order in the
solution. Above that the N/D has picked up just
those bits and pieces of the higher-order graphs
that are needed to make the first N graphs finite
and unitary. This is a remarkable feat and, certainly,
as N increases, we introduce a very great deal of
information into the amplitude.

The point is that, ¢f a theory of the W meson
exists that adds up the finite absorptive parts of
the perturbation theory (which the F-P theory does
not!), then as N increases we are feeding in the
exact™ left-hand cut (no mass approximations are
necessary in the program) further and further to
the left, and each new graph actually specifies the
absorptive part out a very large increment to the
left. For example, with N ladder graphs as input,
we would have the exaet left-hand cut of the ladder
out to s = —(NM)*, where M is the W mass.

This much is close in spirit to the usual S matrix

“nearest-singularity”’ philosophy. A seeming ob-

jection to the applicability of such a philosophy in
this context is that, still, beyond s = —(NM)?
the input cut increases like a power of s (whereas,
presumably, the real cut eventually begins to
oscillate)—and distant parts of the cut appears to
be heavily weighted. In answer to this, we emphasize
that the program contains its own (self-consistent)
damping mechanism (the oscillations generated by
the unitarity requirement), which tends to pay less
and less attention to whatever s far out on the left any-
way! Furthermore, we have seen that the damping
becomes progressively more severe as the inputs
misbehave violently. For example, note the term cos
(m In® ») in Eq. (69). This damping of the input
far to the left lends credibility to the nearest singu-

14 The left-hand cuts of the (mass shell) ladder graphs are
generated strictly from many-meson intermediate states (the
mixed meson-lepton intermediate states can only contribute
off the mass shell) and these are all of finite discontinuity.
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Fra. 10. ¢ — » channel input; (b) e — 5 channel input.

larity aspects of the program. Investigations pres-
ently in progress seem to indicate that in fact the
program may actually converge rapidly in the low-
energy physical region (as the input is improved by
the addition of progressively shorter-range forces).

Possible applications of the program are legion:

For experimental purposes, it will be interesting
to determine the low-energy predictions of the
program using, for example, some finite number
of ladder graphs as input. For example, the simplest
inputs for the left-hand cuts in thee — v and e — 7
channels would be those of Fig. 10(ab). A W-
meson bootstrap is now possible in the ¢ — 7
channel, e.g. with the input Fig. 10(b). (This would
be the first step toward a self-consistent S-matrix
theory of weak interactions.) The problem is, in
principle, reduced to quadratures here, but the
self-consistent solution, if such exists, is still a
difficult numerical task.

Besides the ladder graphs, some nonplanar
(crossed) graphs can also be included as input
(e.g., that of Fig. 11). In general, unfortunately,

Frc. 11. Nonplanar graph input.

vertex and self-energy corrections like those of
Fig. 12 cannot be included, because they have
some divergent left-cut contributions.

The partial waves of a combined strong-weak
S-matrix can be studied. Of particular interest
would be the effect of both higher-order weak and
strong corrections on the G,/G, ratio. It would also
be interesting to study weak mass corrections in
general: in a nonrenormalizable theory, there is
really no simple perturbational argument to predict
magnitudes of weak mass shifts ahead of time.

4 /{V
_____ /s

(4

r/

~_’

———— e

. o . .

*) (b}
Fia. 12. Vertex and self-energy correction inputs.
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Fi1e. 13. Fermi bubble
ladder graph inputs. + PR

Finally, we emphasize that the program pro-
posed here is of value beyond lepton-lepton scat-
tering with W mesons. For example, the Fermi-
bubble ladder graphs of Fig. 13 also have finite
left-hand cuts, and can be used as input information.
Further, ignoring the associated infrared divergence,
the method can be extended to linearized gravi-
tational theory, in which multiple graviton exchange
graphs, shown in Fig. 14, have ill-behaved left-
hand cuts of just the type treated here. Other
higher spin exchange N/D calculations, such as
spin 3 exchange, are also possible.

All these applications are currently under investi-
gation. The program unfortunately cannot be used
for calculation in the singular potential theories,
in the case of which the left-hand discontinuities
are themselves infinite in perturbation theory.'’

It is difficult to see how one might improve the
program, for example, how one might include uni-
tarity in the cross channels. Of course, in principle,
the knowledge of the physical region in the partial
waves of the ¢ — » channel determines the (now
oscillatory) left-hand cuts in the cross channels.
The N /D equations could be solved in these channels
and the results in these physical regions used to
redetermine the left-hand cuts in the ¢ — » channel,
and so on. In practice, this is out of the question
at the present time.

We would like to emphasize strongly, however,
our feeling based on the results here that the
requirement of unitarity is a very powerful and a
very wise constraint in these problems, and that,
in particular, it may be capable, in general, of
obviating the need for any regulator procedure. We

Fi6. 14. Multiple gravi-
ton exchange ladder in-
puts.

& To see thls, note that the singular potentials [V(r)~ 7]
can be written as superpositions of Yukawa potentials (see
Ref. 3), heavily weighted towards the short-range force
[o(s) ~ p»~%. Then the ordinary expression for the double
spectral function of the box graph in terms of o'(/.L)

(2) — ’ 14 ’ Yy =
%G, t) F[o at’ dt'’ o(t)o(t )K(t’ t,, )

is divergent; this is certainly not the case in the W theory.
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feel strongly that unitarity may be the key to
getting at the correct theory.
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APPENDIX 1

An important identity in the text is Eq. (86).
We prove it here as an example of how this type of
integral can be evaluated. We want to evaluate

L) = f_ :” deo ¢ In [osch r(w — 49]. (Il

To do this, multiply both sides by z, change the z
on the right to a derivative on the exponential,
integrate by parts and use the identity (obtainable
from residues)

21
1 —e

+ o
f ¢** des coth 7(w — i€) = P

—z

to obtain

L(z) = [P2x/2(1 — €7°)] + \ 8(2), (12)
where the \ is a parameter associated with dividing
out the z. To determine \, we insist that

e dx —izw 27I'
—e [P P + A 8(x)]

e 2T

= In [csch w(w — 7¢)]. (13)
Asymptotically, the right side of (I3) goes to
{—rw+ln2, a8 w— + o, (14)
47w +ir +In2, as w— — oo,

The asymptotic behavior of the left side is dominated
by the § function and the pole at z = 0; it is

F rw F 4wt + N/ 2, (15)

This allows us to identify A = 2z In 2 + #°, which
establishes (86) of the text.

APPENDIX I

a8 w— ko,

In this section we want to prove the identity

exp [21) ./::B z(1 — e"'%azl —€e° :l = -71;

(111)
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We start by establishing an interesting lemma
+o d:c e—izm )

e Z 1 — €™

exp (2P = —4sinh® ’—’"‘7" (112)
The simplest way to prove this is to show that, on

at least one branch of the logarithm,

+ —trw
[ L (—4sinh’ ’ﬂ) (113)
> T 1 —¢€ m,
To do this, we use the already known
+o
2 f_m do ¢ nsinh T (o + 49
— __liw_ — — 2
=i @r In 4 — 27%) 8(x) (114)

[which, within a change of variable and a complex
conjugation, is just the identity proven in Appendix
I]. Inverse Fourier transformation of (II4) gives
exactly (II2). In the same way, one can easily
show that

+ @ e—izw

« . W
exp (P B e"") = -2 sth (115)

[which is essentially the square root of (I12)]. Now
we can rewrite the identity (II5) in the form

*° dx e'o* :| _ N
exp l:P e & (L —e™A —e] —27.smhm
+o d:c e-o'a.'z
X exp |:P ./;m 21 — ™) — 1] (116)
The limit of the left-hand side at w = 0 is simply
+ o dx ]
exp [P f_m (1 — ™)1 — ™) | ) (117)

To obtain the value of the right-hand side at v = 0,
we note that

+ o

M(w) = exp [P f_ . 2 _di’"e’;(: — 1)]

X elermint - (1I8)
satisfies the homogeneous difference equation
M(w) = 1 esch n(w + 1) M{w + tm). (119)
Thus, near the origin,
M(w) ~ [i/r(w + i9]M(m). (I110)

This gives us finally that, at w = 0, the right side
of (II6) goes to

% exp [P ,/._:“ z(e ™ —-df)(e‘ — 1)]. (111
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Rearranging the w = 0 limit of Eq. (118), i.e., (II11)
and (II7), gives immediately the identity (II1).

APPENDIX III

We want to show here that the integrals appearing
ingide the final inverse transforms in the paper can
be expressed in terms of well-known functions, in
particular, logarithms, dilogarithms, and hyper-
geometric functions. The two integrals of interest are

. _ +o e—.‘uz dx
Ll (O)) - P ‘/;a x(l . emz)(l . e—z y (IIII)
) _ +o© e—iuz d:l: .
2 (@) = —= (1 — ™) sinh 3z

The former appears in the solutions to the inho-
mogeneous equations, the latter in the homogeneous
equations. We only need to calculate one of them
because they are related by

L") = 2L — ).

We calculate L{™ (w) only.

The integrand of L{™ () displays an infinite of
poles along the imaginary z axis. In particular,
there is one third-order pole at £ = 0, second-order
poles at z, = 2xin (n is any integer) and first-order
poles at z,, = 2min’/m (n’ is any integer not a
multiple of m). We do the calculation for o < 0.
w > 0 follows analogously. The residues at each
of the poles in the upper half-plane are

(1112)

Ro=+'2"17‘n’liw2_'iw(m’—1)+%—%_%:lx

R, = —1_ ’( +- L 4m 1) . (III3)

2rinm 21rm

1 |: eﬂr wn'/m ]
—21rin’ (1 _ e—2rin’/m) '

Closing the contour above, (v < 0), we obtain the
contributions to L{™ (w):

Third-order pole

B, =

;;l:w—w(m——l)-l-m—zgj—é:l (IT14)
Second-order poles
A O
- —%(’Lw 2oL - e
+ —— 2mm Li,(&7"), (1115)
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where we have recognized the dilogarithm, Li,(z) =
Zn-l(x"/nz)‘

First-order poles (puttingn’ = lm + r;1=0,1, --- ;
r=1-..-m~—1)

m—-1 o 1 e(zw/m)(xm+r):|
; E lm + r . peiwir/m

1 m=1 2‘rwrlm ar ,
- -77-1' re] 1 —_ —qu'/m Q(e 3 1’ "1;1"
m—1 62‘;@'/", , . N
= ;sz!(l’E;l +"1;1';62 )
(1116)

In (I1I6), we have used the Bateman Manuscript
Project (Higher Transcendental Functions, pp. 27
and 30).

We exhibit, for example, the particular cases

=landm = 2:
Lfl)(w) = 7-;—i(w3 + %) — o ln (1 _ ezru)
+ 55 L™, (D7)
L) = 7_"3 W —iw+d—w+dHhd - e
g L@ + 1 (R 6) a118)

To obtain (III8), we used Bateman, Vol. I, p. 102,

APPENDIX IV. THE FUNCTIONS @.(w) WHICH
VANISH AT o — 0

In the text, it was pointed out that there are
two types of ambiguities in the solution of the
inhomogeneous cases. We restate here the one with
which we are concerned in this section. After
obtaining ®%"7(w), one may multiply by any of the
functions @(w) [see (126)], before applying the
Green’s function. We want to show here that the
use of functions @(w), in this way, which vanish
at o = 0, such as, for example, ¢ sinh 2rw/m, do
not yield any new solutions. We mean new in the
sense that the solution generated might be different
from some solutions generated with ®(w)’s which
are finite at w = 0.

Suppose we have found ®E""(w), and for defi-
niteness, that it is symmetric as well. And suppose
that, before applying the Green’s function, we first
multiply by ¢ sinh 2rw/m. The behavior of the
resulting solution to the homogeneous equation is,
near o = 0,

®p(w) ~ 1(2rw/m)®5" (0). (IV1)
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The equation for the associated Green’s function
is then

G + im) — Glw)
= (m/2x0)[®x""(0)] " &'(w) — A 8(w),  (IV2)

where A is an arbitrary parameter that arises
from the multiplication by the singular structure
—1 csch 2rw/m. We see that the zero at w = 0
ntroduced into the homogeneous solution by our
choice of @(w) has led to a more singular Green’s
function equation. This can be solved immediately
by Fourier transform

BET(0) () = 4—17;; csch’ T (0 + i)

N7 .
+ 5-7—; coth % (@ + 1e). (IV3)

Thus, for the solution to the inhomogeneous equa-
tion, we have

MARTIN B. HALPERN

‘I’(w) = 5% coth i (w + ie)[q:,gl"T(O)]—l grr(w)

+ N cosh” = 857 7w).  (1V4)
This is exactly what would have been obtained by
application of the ordinary Green’s functions, e.g.,
(80), directly to ®5"7(w). The term proportional
to A"’ corresponds in this latter case simply to adding
a multiple of the homogeneous equation.

Similar results are obtained whenever an @(w)
vanishes at o = 0. This includes families of functions
like ¢* sinh’ 2rwn/m, ¢* sinh’ 2rwn/m cosh’’ 2rwn/m,
etc. We conclude that particular @{w)’s which
vanish at w = 0 do not, in general, generate solutions
over and above those obtainable with the G(w)’s
finite at @ = 0. This justifies our taking the set
{@(w)} in the text, to be composed only of those
periodie functions finite at the origin.
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In general, a Wick polynomial must be smeared with a test function depending on both time and
space in order to yield an operator in Hilbert space. However, in space time of two dimensions, it is
sufficient to smear in the space direction alone. This statement is proved by an application of Wein-
berg’s asymptotic theorem. Operators formed in this manner are candidates for approximate inter-

action Hamiltonians.

I. INTRODUCTION

N investigation of the old-fashioned Hamil-
tonian formalism in field theory leads to a
study of energy densities which are local functions
of free fields. We know from Haag’s theorem that
such densities do not yield operators when inte-
grated over all space at a given time. Hence a
natural approximate Hamiltonian to study would
be gotten by smearing a density at a fixed time with
a suitably smooth test function which depends on
the space variables. Such a procedure may or may
not lead to a well-defined operator.
In general, a quantum field ¢(x, t) is a distribution
in space—time; when smeared with a test function

* N.A.S.-N.R.C. Postdoctoral Fellow, supported by the
Air Force Office of Scientific Research.

f(x, t) depending on both space and time it yields
an operator in Hilbert space. Borchers' has shown
that it is sufficient to use a test function depending
on the time alone. The resulting smeared field
operators (when applied to a suitable invariant,
dense set of vectors) are infinitely differentiable in
spacelike directions. On the other hand, it is only
under quite special circumstances that smearing
in spacelike directions alone will do, and except
in such special cases, the Hamiltonian needs further
butchering.

For free fields, it is known to be the case that
they may be taken at a sharp time. In fact, for
f(x) in the Schwartz space &, the free field ¢(f, ?)
is an infinitely differentiable function of the time.

1 H. J. Borchers, Nuovo Cimento 33, 1600 (1964).
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However, the nonlinear functions of a free field,
such as Wick polynomials, are another story. In
particular it took an involved argument by Garding
and Wightman® in order to show that Wick poly-
nomials of a free field actually define operators
when smeared over both time and space. If one
tries to restrict the test function to the space
variables only, it is easy to see that in three or
more dimensional space—time no Wick polynomial of
degree two or more defines an operator applicable
to vectors in the cyclic subspace generated from
the Fock vacuum. In fact, expressions such as
@™ (f, t) cannot even be applied to the vacuum Q,, for
they yield states whose norm squared is proportional
to [ |f(po 4+ -+ 4+ p)I® d2p) --- dQ(p,) = .

On the other hand, if we work in two-dimensional
space-time, [ :¢(zx, 1)": f(x) dzr does define an operator,
since the energy denominator in the invariant phase-
space volume provides a natural cutoff. More
generally, one can take at a fixed time any Wick
polynomial of the free field which does not involve
derivatives. Any such Wick polynomial yields an
operator for test functions in &(z), the Schwartz
space in the space variable. The resulting operator
is continuous in the time and has a domain D,,
left invariant by the application of such operators.
The end result is

Theorem 1: If ¢(x, t) is a massive, free scalar
field in two-dimensional space-time and

@

is a Wick polynomial of ¢(z, t) without derivatives,
then

Az, t) = i a, oz, D™

a6,0 = [ 4@ 0@ a, €S, @
is an operator defined on a dense domain D, C H.
The domain D, can be chosen to be independent

of t and invariant under the field,
A(f, D, C D,. ®3)

The vacuum expectation values arising from such
Wick polynomials are jointly continuous in the
time and in the test function variables. Using the &
norms defined in Eq. (17), the vacuum expectation
values satisfy the following continuity conditions:
For any e and p such that

e>0,1>u>0, [Q, A, )AL, 1) -+

e Aa(fa; t) Q] < M(e, 8) HJl”e tot H}'l”u (4a)

? A. 8. Wightman and L. Garding, Arkiv Fysik 28, 129
(1964).
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and
Do, 4i(fr, 8) -+ Au(foy L) D]
— [Q, 4i(Fi, ) -+ A, 2]
< M, 9) [ fulle -+ NEI

X {3 1t = 617 Wlaman

Here M (e, s) is a constant and a tilde denotes the
Fourier transform.

A possible domain D, is just given by all poly-
nomials in smeared Wick polynomials A(f, )
applied to the vacuum Q,. Then in terms of operators,
the continuity estimates mean that for any @ in D,,

[A(f, t)Q — A(f, t)2]]

(4b)

S Ml(ey S) “f“e+(l—u)/n Itl s tZI*(l-“)- ('5)
II. DIGRESSION ON ||f: 6(x,0): f(x) dx |
In this section we set
4 = [ 166, 00: 1@ ds, ©)

and we see that the expression formally given by

o =) 1 . n
HAQ()H’ = n! [_m [_Q [; A )(xx - xz)]

X mf(xz) dz, dx,

=n!(2r)—"ﬁ: f_: [f(pr + - - + )

X ILdp; o} + mT* @)
actually defines a distribution in &'(z,, x,). This
example is not directly relevant to the proof of
Theorem 1, but only serves to give an idea of the
more general method which is used to prove the
theorem.

We wish to study the transformation ¢ — Ty
defined by

T0& = [ o + ole’ + m dg.

®

Let §, be the space of all continuous functions g(z)
for which there exist real positive constants M, B,
and x, such that

l9(@)| < Mz™ |log z|’ for |z| > . (9)

Now we apply the asymptotic theorem of Weinberg®
to deduce that for all ¢ € §%, where 0 < p < 1,

3 8. Weinberg, Phys. Rev. 118, 838 (1960).
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the integral which defines Tg is absolutely convergent
and, furthermore,

T: §u— T (10)

The theorem is applied by noting that the asymptotic
coefficient & for any line in the space R’(z, q) is
—(1 + p), except for the line in the direction
(1, —1) which has the coefficient — 1. Furthermore,
a(R®) = —(1 + p) and D; = —u. Hence, the
integral in question exists and has the asymptotic
coefficient —u as given by Weinberg’s formula (12).
This shows that Tg has the correct asymptotic
behavior. We must still prove that it is continuous
in order to show that it belongs to §,. For this
purpose we write

ao@ - aoe+n= ([ + )
X [g@ + @ — ¢+ h + 9ld + m") "t dg
+ [ e+ 9 = oo+ b+ @ + ) da.

The first two terms can be made arbitrarily small
by choosing M sufficiently large, since the integral
defining 7T'(g) is absolutely convergent. In order to
deal with the last term, we note that since g(z) is
continuous, it is uniformly continuous on the
compact [z — || — M, z + |8| + M]. Hence this
term can be made small by choosing |h] small,
which demonstrates that Tg & .. This completes
the proof of (10).
We see that

[|A8|[* = n! @0)™(T"(|F)1(0). (11

Since f € &, so are f and | f|* also elements of & C §.
Hence, T"(|7)) € &, ||4%||* is well defined for
all test functions in &,

Let us now use the norms

llgll, = sup (1 + )" |g(@)].

We see that for every ¢ > 0, r > 0 such that
r+e<pu<landg € §, then

ITgll, < M@ |lg]lrse (13)

where M (¢) is a constant depending on e but inde-
pendent of g. This follows from the fact that

1@ 4+ 2" (To)@)|
= lj:n dq (1 + xz);'[]. + (x -+ q)2]§r+}.

12)

X [14+ @+ @17 + m)H& + 9

ARTHUR JAFFE

< Hlgllewe [ dg (1 + 27 + myH

X[+ @@+ @, (14)
Since k,,,(z) = (1 + 2°)~1"*2 € g1, it follows that

f_ : dg (¢® + m)M1 + (= + @174
= [T(h,+ =)
is also in §!, .. Hence,
sup, (1 + 2 (Th,.)@) = M@ < »,  (15)

and so inequality (13) is proved. From this we deduce
that for all e > 0,

[(T"@O)] < |IT*)lo < M(&" llgllne-  (16)
Butif g = |f)*, then g € §forall0 < u < 1 and

llglle < (1718
so that for all ¢ > 0 such that ne < 1,

1A% < @n)7n! [MET(|If] 19

which proves that expression (7) defines a distri-
bution of the required form.

III. THE SPACES §;, §. AND THE OPERATORS Ty,

In this section we introduce spaces of and opera-
tors on functions of s variables analogous to those for
one variable studied in Sec. II. In what follows
we often regard functions g(z,, - - - , z,), which depend
on s scalar variables, as functions of one s-vector
variable x. We now make the following definitions:

The Spaces ©;. Let r stand for the Euclidean
distance in R*(zy, ++- , z,). 7" = D i, 2% Let ||-||,
denote the family of norms on functions of s variables
given by

llglls = ess.sup. (1 + ™ o). an

Let &, be the space of all continuous functions of s
variables with finite x norm. Note that

&. C G, for p > pa. (18)

The Spaces §;. A function of s variables g(X)
belongs to the space §, if it is continuous and for
any subspace 8 C R’ of dimension r, and for
any basis L,, +-- , L, which spans S, g(X) satisfies

Ig(Ll’ﬂxﬂz e L2772 IR P SRR Lr"lr)l
= O[p*n3™ -+« n7"*(log )™ - (log 7,)™],

for some B8,, --- , 8, when 7, -
pendently to infinity.

19)

-, 1, tend inde-
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Note that &, C §, and

& C & (20)

The Integral Operators Ti;. We define a set of
integral operators T'¢; for ¢ # § which act on functions
of s variables by

for f15 > Ha.

(T;ig) (xl: ot

Xg(xl" ',x-‘+Q:"'xxi—Q:"°7xu)- (21)

Note that for a given s, the various 77;; formally
commute.

Theorem 2: 1. If g € §:, 0 < p, then the integral
which defines T'};(g) converges absolutely.

II. it Gifor0 < p < 1

III. For fixed s, the various T'; com-
mute on §; if 4 > 0.

IV. For any e > 0, p > 0 such that
p+ € £ 1, T¢;is a bounded operator from &;, , to &;.

o) = [ dg (g 4wy

@ — TG +1) = [ dgle + w1 g, -

- (f.,:u + f;) dq [ + m* gz, -+ -

—_ 9(11?1 + Ry oo
M

+ f dg [¢" + m g, -
-M

-— g(xl + hl’ v

The first two terms of (23) can be made arbitrarily
small by choosing M(x) large enough, since the
integrals defining T,(g) are absolutely continuous.
On the compact

(s ~ |8, 2 + [&il], -+
X[z, — |8 — M, z; + |8 + M), -,
Xz, — &) — M,z + |8l + M], -+,
X [z, = &, z. + (&[],

g(x) is uniformly continuous. Henceby choosing

|4 + AT ®)| = l f_ : dg lg* + m 7' + A" + (@ + 9 + (@ — 9 +

XA+ @+ + @ -9+ 2 al ™, -

kydd
kd
15k<s

v+ hi+ g, -

v+ hi + ¢, 00
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Hence there is a constant M (e, 1) depending only
on x and e such that

[1T%(@) s < M(e, ) |lglluse,

Remarks: 1. Statement II implies that if ¢ & §},
T:;(g) is continuous.

2. From (22), we see that T;; has a
unique extension to the closure of &}, in the x norm.
So extended it is a continuous linear operator into
the closure of &;_, in the 4 — ¢ norm.

pt+el. (22

Proof: The convergence of the integral defining
T:(g) I and the rate of decrease of the function
Ti:(g) (part of II) both follow by a direct appli-
cation of Weinberg’s theorem (3). The verification
of the hypotheses is just as straightforward, but
far more tedious than, the discussion of T on
given above, and merely uses the definitions of T'j,
and . In order to finish the proof of II, we must
show that T';;(¢g) is continuous,

y Ti + g, oo 7ms)—g((x1+hlr ;xn+hn)}
2Tt gy, e B — G, )
)xf+hi_ g, " ’xl)}
N7 o PR I AR :x-)
1 &+ hy— gy e, 2} (23)

{h:] < |8;| sufficiently small, the third term of (23)
can be made arbitrarily small. This completes the
proof of II. ‘

. In order to demonstrate the commutativity of
the various T%;, we need only apply the Weinberg
theorem to the integrand corresponding to the
product of the two integral operations in question.
For g & §;, u > 0, the theorem tells us that the
double integral is absolutely convergent. Hence by
Fubini’s theorem, the two iterated integrals agree
and equal the double integral.

We now proceed to prove 1V,

> e

ke
kri
1Sk<s

g2 — g, 00, 1)
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Ssup {1+ @+ ) + @ —¢)f X 2

kg
1<k<s

Xﬁﬂﬂf+MﬁbHWu+m+W+m—®w-Eﬁﬁwn

The sup term on the right-hand side of (24) is
majorized by ||g|l,+.. The remaining integral term
could also be written as (1 + r)¥T (R (),
where

hix) =1+ e g (25)

Hence, by (ii) we know that T3,(h,,.) € &, where
A= min (u + ¢ 1),sotha’cifp-|— e <1,

sup (1 + P)(T8 (L ]@) = Mle, ) < .
Hence,
TH. = fé’.BI (1 + AMTH(@]1®)]

< M(e, ) [lgllare for u+e< 1.
IV. PROOF OF THEOREM 1

We note that, in order to prove Theorem 1, it
is sufficient to prove that the vacuum expectation
values satisfy (4a) and (4b). From these estimates,
it follows that one can use the reconstruction theorem
of Wightman* to ensure the existence of field
operators A (f, t) which are defined on the domain D,
described in Theorem 1 and which leave D, invariant.
Furthermore, the reconstruction theorem tells us
that the vacuum expectation values of these oper-
ators A(f, t) will just be those with which we begin.

Let us use the notation for Wightman functions,

W(f7 t) = [QO’ Al(fl; tl) T A'(:fl; tc)QO]' (26)

Now W(f, t) can be expanded in a finite sum of

J;("‘“) !g(xl: et

ARTHUR JAFFE

xxi+q,; fe !xi_q’y e le)’}

(29)
ki
ks

1<k<s

ot [ [ip(E )
X ’f.- éf‘: enPf)

TS

Now

sup H I:l + (i e.-lP,)ilh

PERYN =1 i=1

[ L[+ (Ser) | @+ mtar =0 11

- (=] i=1

1A, 8. nghtman, Phys. Rev. 101, 860 (1956).
s A M. Jaffe, Ann. Phys. (N. Y.) 32, 127 (1965).

terms, each one in the form

Lw o .[:, [1911,'5- {’ll A(”[(xi’ L) = @ t,-)]}”i

X kUl f(ze) dxk}] :

(For the exact expansion, see the remark following
Theorem A.1 of Ref. 5.) We now use a graph to
represent each of these typical terms. The points of
the graph are labeled 1, 2, -.- |, s corresponding
to z,, %, -+ , x,. There is a direeted line corre-
sponding to each factor (1/9)A'"’ (2, — z,) which
runs from %k to t, where £ < ¢. The elements of
the incidence matrix for the graph ¢, is labeled by
points ¢ = 1,2 --- [ sand lines!{ =1,2, --. N,
where N = E.-<,- r;;. Then

+1
€1 = —1
0

To each line [ we assign a momentum variable P,
which ranges over (—®, ). Then the typical
term (27) contributing to W(f, t) can be written

@en™" f j:w exp {—-z ; Z:e”tw'}
[Hf(Z«,P)] IToi*dP, (@)

i=1

27

if line / runs from vertex 1,
if line I runs to vertex ¢,
if line [ does not enter vertex 7.

where w, = (P2 + m*)!. In order to prove (4a),
we note that (28) can be majorized by

N 2 3¢
2 + m?) 1P, < @07 sup H [1 + <Ze.-,P§) }
Pi'eRY i=} i=1

II [1 + ( 2 eaP, )T X II (P} + m") "t 4p,.

—® {=]1

{3 es) = TLIRIL @)
s (Tu)r”}(k )](0) M. (5)8) < o,
(30)
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where

fl {1+ 27",

i=1

k:(xl Tty xc) =

and we have used
ki € €,
and Theorem (2.III) and (2.IV). Hence expression
(28) is majorized by
@n~"M(e, 8 II Il

and W({f, t) is majorized by a finite sum of such
terms.

In order to prove (4b), we return to expression
(28) for a typical contribution to W(f, t). A typical
contribution to W(f, t) — W{{, t') is

o [ [l o B
- o 5 £
X ﬁ f»(i 5“P,)

(1.2} i=1

N
X II P} + m» "t dP,. (31
i=1
Since
A4, -+ A, — BB, -+ B,

= (4, — B)4, --- 4,

N
H P: + mz)_§ dP,
=1

j;h 11 ( > eaP: )

< su
- p’El{)‘V

(0 (Eer) T 1l (S )
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+ By(4; — B)A; -+ A, + -
+ Bsz e Bc-—-l(Aa — B.);
we can set C; = 2.7, ¢, (P? + m*)},
A; = exp {—1Cy;},
and
B; = exp {—iC;t}}.

Thus (31) splits into a sum of s integrals where in
each of these integrals one term (4; — B;) appears.
Let us now split each of these integrals in two,
aceording to whether [C;] < It; — #|™ or |C;] >
[t; — t|7*. Call these regions, respectively, I; and IT;.
In region I;, majorize |A; — B;| by

ti . .
?:C,' f 6-‘6“’ ds,l
i’
< IC:’I |ti - t:"[ < lti - t:"ll_u;

and majorize |4;] and |B,| by 1, where k 5 j. This
yields a term majorized by

[t — "™ f& f ﬁ f‘(g—: e,-,P,);

-ty =} [}
X H (P} + m¥ 7t 4P,

im1

|4; — B| =

< M9 I — ™ TT AL

In region I7; we write |4; — B;| < 2, and hence
majorize that integral by

(32)

& r)})

2 |=(l=p)/2s = N 27 ]-3e N
X | [1 + (Ee,zP)] 11 [1 + (ZeuPl)] II ®% + m)7 P,

< Wl

x [ 11 [1 (G I

st H}‘:‘ku-u;fs :

< Ut =l IR

In estimate (32) we can replace ||f;||. by the larger
quantity ||7:]lcsa-w/s Combining estimates (32)
and (33) and then summing over j = 1,2, --- , s
yields an upper bound for the modulus of (31) which

is of the form required on the right-hand side of (46).
Since W, t) — W(£, t') is just a finite sum of terms,

i=1 l=1

e S VAL

N

IT @ + m»tap,

: H}:He M(e: S)C" (33)

each with the form (31), we can get estimate (46)
by replacing M (e, s) in (32) and (33) by the largest
constant coming from the typical terms, times the
number of terms. This completes the proof of
Theorem 1.

The author thanks O. E. Lanford for remarks.
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A method is given for obtaining explicitly an ¢nfinite number of exact invariants for a physical
system described by the coupled set of first-order hyperbolic partial differential equations

dui/dt = Aif{uo, Wy + -+ Us) Ou;/0x #ji=01,---,n). (Al)

Temporal and spatial invariants are constructed as integrals of temporally and spatially invariant
densities T and X, over appropriate spatial and temporal intervals, respectively. For physical systems
the energy and momentum densities are temporal invariant densities. These invariant densities are
solutions of the hodograph transformed equations corresponding to (A1). For the case n = 1 every
invariant density T satisfies an equation in conservation form: (Tu,): — (T, )z = 0. The methods are

applied to the equation
yeo — (1 + eyz)Yae = 0, (A2)

and a denumerable infinity of invariant densities, each expressible as a polynomial, are calculated
in two equivalent cases: the first when (A2) (with a = 1) is expressed in zero diagonal form 4, = v,,
v; = (1 + eu)us, where u = y; and v = y,; and the second when (A2) is expressed in diagonal form
re— ®r, = 0, 8, + ®s; = 0, where @ = (4 ¢2 + o)(r + §))*/@*a and r and s, the Riemann in-
variants of (A2), are related to » and v. A theorem of Noether is used to construct from the invariant
densities continuous iransformation groups that leave the action functional invariant. Using the
methods of Kruskal we derive the adiabatic tnvariant for the continuous system (A2) (e = 1) which
has nearly periodie solutions. To order e the adiabatic invariant is identical with one of the exact
invariants and gives no new information about the system.

JULY 1966

1. INTRODUCTION

HE use of invariant or conserved quantities of
physical systems may provide one with a deeper
understanding of their dynamies. The gross features
of the behavior of a physical system can sometimes
be visualized in terms of invariant quantities as,
for example, energy, momentum, etc., and adia-
batically invariant quantities as, for example, the
magnetic moment of a charged particle in a magnetic
field. The study of the properties of one-dimensional
nonlinear continua has been augmented, in recent
years, by formulating the problem in terms of
coupled partial differential equations expressed in
conservation form.>~® For example, one uses the
equations of conservation of mass, momentum, and
energy to describe inviscid hydrodynamics problems.
Loewner® and Rozhdestvenskii* have considered
the problem of transforrhing a set of partial differ-
ential equations of first order to conservation form.
Loewner was mainly interested in elliptic systems

1 R. Courant, Methods of Mathematical Physics, 11 (Partial
Difierential Equations) (Interscience Publishers, Inc., New
York, 1962). Appendix 2 of Chap. II and Chap. V, Paragraph
9

: P, D. Lax, Commun, Pure Appl. Math. 10, 537 (1957),
and “Nonlinear Hyperbolic Systems of Conservation Laws”,
published in Nonlinear Problems, edited by R. E. Langer
(University of Wisconsin Press, Madison, Wisconsin, 1963),

. 3.
L C. Loewner, J. Ratl. Mech. Anal. 2, 537, (19563). The
authors are indebted to P. Lax for this reference.

+ B, L. Rozhdestvenskii, Soviet Math. Uspekhi 2, 53,
(1959). See Secs. 6, 7, and 12.

¢ §. K. Godunov, Soviet Math. Doklady 2, 947 (1962).

and applied his results to a stationary, two-dimen-
sional, compressible fluid-low boundary-value prob-
lem. Rozhdestvenskii treated hyperbolic systems
of partial differential equations and applied his re-
sults to the problem of the uniqueness of generalized
solutions of the Cauchy problem. They both showed
that certain pairs of coupled first-order partial dif-
ferential equations could be replaced by an infinite
set of equations in conservation form; and Rozhdest-
venskii showed that systems of three or more partial
differential equations generally cannot be repre-
sented by equivalent sets of equations in conserva-
tion form. .

In the present work, we approach the problem
differently, and in Sec. 2 we show that one can
derive an infinite family of eract invariants for a
system of two first-order nonlinear partial differ-
ential equations. These invariants are spatial inte-
grals of linearly independent ““invariant densities.”
Each is a solution of the linear, second-order,
partial differential equation obtained by applying
the hodograph transformation®” to the given pair

¢ These invariants were found while working toward an
understanding of the Fermi, Pasta, Ulam (FPU) phenomena.
N. J. Zabusky, ‘“Phenomena Associated with the Oscillations
of a Nonlinear Model String” in Proceedings of the Conference
on Mathematical Models in the Physical Sciences, S. Drobot,
Ed. (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963),
?néiﬁh/)l. D. Kruskal and N. J. Zabusky, J. Math. Phys. 5, 231

1964 ).

7 N.J. Zabusky, J. Math. Phys. 3, 1028 (1962) Paragraph 3.
The hodograph transformation interchanges the roles of the
independent and dependent variables and in our problems
linearizes the equations of motion.
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of equations. We then show that the invariant
densities satisfy equations in conservation form,
thereby giving an alternate derivation of a result
of Rozhdestvenskii. In Sec. 3 we apply these general
considerations to a one-dimensional nonlinear hyper-
bolic equation which describes, for example, longi-
tudinal wave propagation along an elastic bar.’
We show that each invariant density contains a
finite number of terms of the form yly%, where
Y. = u is the elastic strain and y, = v is the time
rate of change of the displacement. In Table I we
separate the invariant densities into two classes
and display the first six of each. We note that the
second entries in class “a” and class “b” are pro-
portional to the energy density and momentum
density, respectively.

In Seec. 4 we use E. Noether’s theorem (1918) to
illustrate the relationship between equations in
conservation form and continuous transformation
groups which leave the action functional invariant.
Finally, in Sec. 5, we calculate the adiabatic tnvariant
of this mearly periodic continuous system to an
appropriate low order and show that it is identical
to the exact invariant to that order. In fact, we
discovered the exact invariants by using the methods
developed by Kruskal’ to calculate the adiabatic
invariant.

2. THE PARTIAL DIFFERENTIAL EQUATIONS
FOR THE EXACT INVARIANTS

A, Preliminaries
To start, we will consider n + 1 coupled first-
order partial differential equations
Uiy = A, G 4i=01,
where
Uy = ou;(z, £)/8t and wu,,. = ou.z, )/0x, (2.2
and where the summation convention is understood

for repeated subscripts. For this system to yield
hyperbolic equations, the matrix

A-’i = Aii(“o, Wiy ** un)

must have distinct real eigenvalues. We consider
an initial-value problem for a function periodic
in space, whose fundamental period is the interval
-1 <z<1.

B. The Temporal Invariant

We now consider the integral

1
=f dz T, Uy, + - -

8 R. Courant, Ref. 1, Chap. V, Paragraph 3,
s M. Kruskal J. Math. Phys. 3 806 (1962).

), (2.0

y Un). (2.3)
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If I is a temporal invariant of the physical system,
then

o———f T..‘u,,dx—f Tu A, dz, (2.4)

where we have used the equations of motion (2.1)
for wu,,. Substituting du; = wu;.dr we obtain
1
[ Tudiau =o. @2.5)

-1

The integral vanishes if the integrand is a perfect
differential,

T.“A.',' duf =dV = V.,, du,-, (2.6)

where V is a function of the periodic functions u;,
so that

Vs =V foms @7

We thus obtain the set of n + 1 coupled equations
for the dependent variables T and V

Vi = Tu Ay G=0,1,--- ,m). 2.8)

We could also have chosen the range of integration
—o <z < +oo with Vijaia = V|,-..

We can eliminate V from (2.8) by cross-differ-
entiation and obtain 3n(n 4+ 1) coupled second-
order partial differential equations of the form

(TwAii)ub = (TwAc'k)ul (.7 < k)) (29)

for the unknown temporal invariant densities 7.

One could readily discuss the properties of the
linear equations given in (2.9) as a function of
properties of the matrix A,;; however, we will go
directly to the problem at hand and consider a
2 X 2 matrix (n = 1) in déagonal (4o, = A, = 0)
or zerodiagonal (Agpy = A,; = 0) form. For dis-
tinctness we write T’ instead of T for the diagonal
case,

If the system of Eqgs. (2.1) is hyperbolic and
the matrix A has distinet eigenvalues, then it can
always be reduced to a diagonal or “normal”’ form
by introducing the Riemann invariants.”® With
the diagonal form and the given form one can always
obtain a zerodiagonal form. In the present work we
find that the zerodiagonal form is easier for com-
putation in special cases and that the diagonal form
is easier for computation in more general cases and
permits a concise presentation of results. The two
forms are of course equivalent.

Thus, for n = 1, Eq. (2.9) yields
Diagonal:

Pov(Aoo — A1) + PusAoois, — TunAinie, = 0;  (2.10)

10 R. Courant, Ref. 1, Chap. V, Paragraph 2. Also, P. D.
Lax, J. Math. Phys. 5, 611 (15 Bay R o
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Zerodiagonal:
Tu.u.Am - Tu,u,Alo + Tu.A01;u. - Tu,Au,xo: = 0. (2-11)

Equations (2.10) and (2.11) are ¢dentical with the ““t” hodograph equations’ obtained by applying the hodograph
transformation to the original partial differential equations. Hence, the exact temporal invariants are obtained
by integrating solutions of the ‘“#’’ hodograph equation over the fundamental period —1 < z < 1.

C. Partial Differential Equations in Conservation Form for the Temporally Invariant Densities
For the linear system described by the wave equation
Yo = Yooy
with w, = ¥, and %, = y,, the energy density is
3+ v = 3 + w).
It is obvious that the right side of this equation satisfies the zerodiagonal form, 7T,
The Lagrangian density for the linear system

L =30 — v = 3 —w),

- T, =0

ot U1ty

satisfies the relations
0L../0t + 0L,,/0x = 0,
and
3L, /3t + 38L.,/0x = 0,
where the first equgtion is an identity when expressed in terms of y. This suggests that we inquire whether
also the solutions 7' or T will satisfy an equation of the conservation form
_(a/at)(aoTu. + alTua) + (a/ax)(ﬂOTuo + ﬂlT'h) = 01 (212)

where o, @, B, and 8, are functions of u, and u,. Equation (2.12) has the form of the Euler-Lagrange
equation for a certain class of physical systems. We expand (2.12) and for the diagonal case we replace
Uo,¢ DY Aogolto., and u;., by 4,,u,,.. Gathering terms we obtain

0= [_(aoTuo + alTu:)uaAOO + (BOT% + BITM;)uo]uo;z + [_(aOTuo + alTu,)u,Au +(30Tm + .BlTu‘)u.]ul:z-
(2.13)

Since uq,. and u, ., are locally independent of 4, and u, and of each other, each bracket in Eq. (2.13) must

vanish identically. This vanishing should be a consequence of (2.10), so each bracket should be a multiple

of the left side of (2.10), say by the factors R,(u,, u,) and R,(u,, u.), respectively. By carrying out the
differentiations and comparing, we obtain the conditions which the @ and 8 must satisfy:

Conditions Imposed on the Conditions Imposed on the
Coeflicient of uo,s Coefficient of uy;z
Bo — @ AOO =0 (a) ﬁl — ap Au = ( (e)
B — ar Aw = (Ao — An) Ro (b) Bo —ag Ay = (Aw — Au) B, (f)
Boiuy — au, Ao = Aooyu, Ro (e) Bru, — anu, Au = — Augu, B (g)
Bru, — ayuy A = — Augu, Bo (d) Bow, — avu, At = Aowu, B (h) (2.14)
Note that A, # A,, for otherwise the original ar = ay(t) and o = a,(uy). 2.17)

system of equations would be degenerate.
Substituting (2.14a) into (2.14f) and (2.14e) into
(2.14b) we find

Substituting (2.14a) into (2.14c) and (2.14e) into
(2.14g) we obtain

R, = —a; and R, = ao. (2.15) a0Aooiue = —1 oo, aDd @Ay, = —adi..
2.18
Substituting (2.14e) into (2.14d) and (2.14a) into (2.18)
(2.14h) we find Thus, we see that
al:uo(All - Aoo) =0 and —ao;.‘,(Au — Aoo) = 0. _%o _ AOO:u. — An;u, ,
(2.16) ar Awwe  Anii

Thus, we conclude or Aooi,Arriwe — Agoiuidine, = 0, so that A, and
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A,, must be functionally related if we are to be able to satisfy the imposed conditions. For example, if

ap = —a; = 1, then 8, = Ay, and 8, = 4,,,

and hence

_(Tu. - Tu,)! + (AOOTuo - AllTu;)z = 0;

provided that Eq. (2.18) is satisfied.

(2.19)

(2.20)

For the zerodiagonal case, we proceed in a similar fashion and find the following imposed conditions:

Condition Imposed on the
Coefficient of u o,
Bo = — Au Ro (a)
B1 = a0 Ap (b)
a; A = — Ay R (c)
Bo.ue — oy, Ao = — Aioyu, Bo (d)
Briue — anu, Ao = Asou, Bo (e)

From (2.21¢) and (2.21h) we see that
Ry, = —a, and R, = —a (2.22)
and thus (2.21a) is consistent with (2.21g) and (2.21f)
is consistent with (2.21b). Furthermore, if (2.21a) is
substituted into (2.21d) and (2.21f) into (2.211), they
yield the same relation
al;quOI = aO;u,Alo- (2'23)

Substituting (2.21f) into (2.21e) and (2.21a) into
(2.21j) yields two relations,

(aoAno)u.
(a1on)u, = ao;qum - aOAOI;un‘

For example, if Aoy = 1 and A4,,,, = 0 and if
we take o = 8, = 0 and oy = B, = 1, then ali the
above relations are satisfied and the conservation
equation becomes
_(Tu;)t + (Tuo)z = 0. (225)
Thus, we have found under what conditions
linear combinations of the functional partial deriv-
atives of the invariant density T or T satisfy partial
differential equations in conservation form.

D. The Spatial Invariant

= al;u,Alo - axAm;un

(2.29)

In Sec. 2B we emphasized the temporally invariant
densities because we had the initial-value problem
in mind. For boundary-value problems, in which
uw; and u;,, are given at the same z and periodic
solutions in ¢ are required, the spatial invariant
densities X are natural analogs. If J is a spatial
invariant,

" ’Lt,,), (2 26)

1
J =f dt X(u,, %y, -
-1
then dJ/dx = 0 or

1 1
0 = Xu.'un';: dt = Xui(A_l)iiui;‘ dt! (2'27)

-1 -1

Conditions Imposed on the
Coefficient of uy,

B = —Au R, ()
Bo = A (2)
op A01 = - on Rl (h)
By, — anu, A = — A, By 1
Boju, — aouy A = Aoyu, Bi. i)

(2.21)

where the integration is over a periodic time interval.
The matrix (47");; is the inverse of 4;; so that

(A™NuAp = ba. (2.28)
Equation (2.27) is satisfied identically if the spatial
invariant densities satisfy
[Xui(A_l)l'i]uk = I.Xu.'(A_l)ik]u,', ] < k (229)

This is the analog of (2.9). For n = 1, we obtain
the diagonal case from (2.10) by replacing Ag,
by 1/Aw, Ay, by 1/4,, and T by X, and the
zerodiagonal case from (2.11) by replacing A, by
1/A.0, Ao by 1/A4;, and T by X.

Diagonal:
- 1 1 5 1 = (1
o) ), 2 o
Ao~ Ay TXN\T), ~ XelT), =0
(2.30)
Zerodiagonal:
1 1
%) - 2 5)
° AIO e AO].
e Alo Uo “ AOl L2 o ’ (2.31)

Equations (2.30) and (2.31) are identical with
the “z” hodograph equation’ obtained by applying
the hodograph transformation to the original partial
differential equations, (2.1) with » = 1. X will
also satisfy an equation in conservation form. This
equation is obtained in an entirely analogous manner
to that given in the previous section.

The polynomial solutions of the temporal invariant
density equations (2.10) and (2.11) are given in
Sec. 3. In an analogous manner one can determine
the spatial polynomial invariant densities. For a
special case, we will exhibit the second spatial
invariant density, that is the one which is analogous
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to the energy density of the system. If we multiply
the hyperbolic equation

Yoo — Yuell + ) = 0 (2.32)

by y. and integrate over the femporal interval where
the solution is periodic, we obtain

1
0= fl dt(y,yu — YolYzz — ey:yzz)

d 1
= - [ @t + 322 + 1))
Thus,
Xo(y, y) = 3yi + 3u: + 3t (2.33)

is the second spatial invariant density and it differs
from the energy or second temporal invariant density
3T:(ys, ) = 3 + 3. + §ey; in the coefficient
of the last term. This result can be obtained directly
from (2.31), if we rewrite (2.32) as two coupled
first-order equations

(2.34)

where 4, = y, and u; = y,. Thus, 4o, = 1 and
Ao = 1 4+ eup and Eq. (2.31) becomes

[X./( + eup)lue — Xuo, = 0. (2.35)

It is evident that X,(ue, u,) = 3u? + 3ud 4 % is
a solution of (2.35).

The precise meaning of these spatial invariants
is unclear at present, but they also should enable
one to determine more properties of the solution
of the equation than one could do with only the
temporal invariants. It should be emphasized that
these derivations are applicable to any set of hyper-
bolic equations which can be put in the form (2.1),
and apply not only to elastic longitudinal wave
propagation but also to comparable hydrodynamic
and electrodynamic equations.

3. CALCULATION OF THE EXACT TEMPORAL
INVARIANTS

A. The Hodograph-Transformed Equations, An Example

Ug;e = Un;ay U = (1 + euO)uD;z;

We will now find polynomial solutions for the
exact temporal invariant of the diagonal and zero-
diagonal partial differential equations. The two
forms are equivalent, but in special cases one solution
will be easier to derive than will the other,

Elsewhere,®” we treated in detail properties of
the wave equation,

Yoo = PWIeey & =1+ e). (@B
We can write (3.1) in diagonal or zerodiagonal

form. The zerodiagonal form is obtained directly
from (3.1) by introducing

M. D. KRUSKAL AND N. J. ZABUSKY

U=y, 02=1y,. 3.2

Hence,

(3.3)
and by identification with (2.1): u, = u, u, = »,
Aoo = Au = 0, A(n = 1, Alo = @2(11). These
satisfy the conditions (2.21). The hodograph equa-
tion (2.11) that corresponds to (3.3) is

u =v, v = (U,

&T,, ~ T = 0, (3.4)
which in our example is
q+e)T,, —T. =0, (8.5

The diagonal form is obtained by constructing
the Riemann-invariant equations equivalent to
(3.3), namely

re = &r,, s = —&s,, (3.6)

where
d =€+ eu)*a
and
1 %
[:] =+ 4+ §f o) du’,

or
[ﬂ=i@+€@+@%vhwm% 3.7

and u and v are given by (3.2). Note that (3.7)
defines % as a function of (r + s),

u = (1/9{Ge2 + a)r + ¥ — 1}.
In this case we identify
o =1y = 8, Aoy = Ao = 0,
Ao = — 45 = Ge(2 + a)(r + )=/ @+,

These satisfy the conditions (2.14). The hodograph
equation (2.10) that corresponds to (3.6) is

2¢TTI + QDTT + QTTI = 0 (éf = ¢')’ (3'8)
which in our case is the Euler-Poisson—Darboux
equation,

T.. + [»/(r + 9)T, + T)) = 0, (3.9)
where T = T(r, s) and n = /2(2 + a). It will be
easier to deal with (3.9) than with (3.5) when «
is nonintegral or large.

B. Polynomial Solutions for the Zerodiagonal
Representation with @ = 1

The solution of (3.9) or (3.5) for boundary con-
ditions given in either the r, s, or the %, » plane
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. The polynomial invariant densities and their « partial derivatives for (1 + eu) Ty —
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Tuuw = 0.

‘a”’ Invariant Density

T1 =9
Ty = v 4+ u? + {u3/3]
Ts = v® 4 3vu? + €fvul]

Ty = v + 100%u? 4 5vut + 100%u?/3 + 4vu’] 4 €[20u’/3]

2

T: = ¢ + 6v2u? 4+ ut 4 2022 + 4us/5] + 2us/15)
5
¢

= 98 + 15042 + 15024 + ub + Svud + 12025 4 9u/7] + 202 + § us] + u?/18]

=0
2w = 2{u + eut/2}
Tyu = 3{20u + vu?l}
Tiu = 4{30% + u® 4 3v2u2/2 + uf] + €fus/5]}
Tou = 5{4 8y + doud + 20%u? + 4vut] + 4vus/5)}
Teu = 6{6vtu + 10v2u? + ub + 5v*u?/2 4 10024 + 3 ut/2] + €202 - 2u7/3) + fus/12]
“b” Invariant Density
Tl = U
T = 2vu
T: = 3v*u + ud + [ut/2]
Ty = 4v%u + 4ou® + 2vu4]
Ts = 5vtu + 1002u® + ub + [5v2ut 4 uf] 4+ [5u7/21]
Ty = 6vdu + 200%u® + 6vud -+ {10v2ut + 6vus] 4 [100u?/7]
Tl;u = 1
Touw = 29
Tsu = 3{v? + u® 4 {2u2/3]
wu = 4{v? 4 3vu? + {2vul]}
Tsu = 5{v* + 6022 + ut + {dv2u® + 6ud/5] + us/3)}
Ta w = 6{vS 4+ 10v3u? + Svut + {200%u3/3 + 6vus] + 2[5vus/31}

has attracted some interest.””'' Here, we shall be
concerned with polynomial solutions in the two
representations. We substitute

(- -]
= > 3 a.uv"

lm—o me=—

into (3.5) with @ = 1 and obtain
L4+ew) X X mim— Day,uv™?
- 32U - Day "™ =0,
where we require that
=0 for (3.11)

We make each term bear the common factor u's™ by
appropriately shifting indices of summation, and
obtain

E Z utvm[(m + 2)(m + 1)(@1,me2 + i1, ms2)
— (4 20+ Dasem] =0. (3.12)

The recursion formula defined by (3.12) can be
written as

(3.10)

lorm <0.

al+2.m = (l + 2)(l _|_ 1) (al m+2 + €d; m+2))
or
Are2.p-1 = (p—l+2)(p—l+1) [al.zz—l+2+eal—l,p—l+2jy

+2)(+1D
(3.13)

ug, T Copson, Proc. Roy. Soc. (London) A216, 539
(1953); A. G. Mackie, J. Ratl. Math. Mech. 4, 733 (1955)

where p = [ + m. For each value of p = p, we have
two _ﬁmte polynomial series: the “a” series beginning
with »* and ending with

(constant) e**ul" for p, even,

$(po—1)

(constant) e -n

vt for p, odd;

and the “b” series beginning with p,uv™™' and
ending with

*(Fo—z)v

(constant) e ut @re 0

for p, even,

}(po~1)u§(3po—l)

(constant) ¢ for p, odd.

The even q series has $(p, + 2)(po + 4) terms and
the even b series has $p.(po + 2) terms. The odd
a and odd b series have $(p, + 1)(po + 3) terms
each. These results are readily obtained by observing
the property of the recursion relation (3.13) in
the (I, p) plane. For a given p = p, the sum of
the integral exponents of 4 and v for each term

u'v™ = u'v*"* fall on the boundary of and within
the triangular region bounded by p = p, and:
p=1 and p = /3 4+ p,, a even;
p=141 and p =1/3 4 p,, a odd;
p=1-+1 and p=(1— 1)/3 + p,, b even;
p=1 and p = (I — 1)/3 + p, b odd.

Table I gives the polynomials and their u deriv-
atives for values of p, up to 6. T,,. and T,,, are
trivial. T , is twice the energy density of the non-
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linear system and T,,, is twice the momentum
density. At present a physical interpretation of
the higher invariant densities has not been effected.
One can establish that the polynomials satisfy the
relations:

(T,), = nTn,, for a and b; (3.14a)
(T.). = n(n — 1) f (1 + e, du, for a;

’ (3.14b)

Ty ="' +n(n—1) f“ 14+ e))T,., du, for b.

¢ (3.14c)

Furthermore, one observes that terms not involving
¢, that is, polynomials derived from a linear wave
equation, are obtained from the relation

[ Ioe =36 4ur 230 —ur. @a5)

Hence, the nonzero numerical coefficients of the
terms not involving e are those of the binomial
expansion.

D. Polynomial Solutions for the Diagonal
Representation

The polynomial invariant densities obtained from
the diagonal equation apply to a more general case
and can be expressed in a more concise form than
those obtained from the zerodiagonal equation.

Equation (3.9) has a singularity at r + s = 0 and,
by analogy with the method of Frobenius for
ordinary differential equations, we seek a power-
series solution of the form

©

T = 2 > a4 97 — 97,

© Mmm-—o

(3.16)

where @, ,, = 0 for [ or m < 0 and v is to be deter-
mined as a solution of an indicial equation. We
substitute (3.16) into (3.9) and for the convenience
of the reader we exhibit separately the terms con-
taining g, dor, and ay,.

0=+, +nT. +7T)
=ay(y +2n — D+ 8" + (r+ 9"
X [@ory(y+2n — D(r — 8)+ai(y+1)(v+2n)(r+s)]
+ ZI: ;' (r+ )" — o
X[y +14+2) (v + 1420418142, m-s—m(m— 1z, ],
3.17)

where the prime indicates summation over all but
the three terms that are separately exhibited. The

M. D. KRUSKAL AND N. J.
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vanishing of the coefficient of ag(r + 8)"™" yields
the indicial equation, and leads to two values of v,

y=0 and y=1—2n=2/C+a), (3.18)

while the third term of (3.17) yields (at least if
n > 2)

3.19)

The recurrence relation for the remaining terms
is obviously

[ O.

a _ m(m _ 1) a
Bt S G T+ Oy + L+ en + D) M
(I+m=22), (3.20)
or
ap—m+2.m—2
_ m(m - 1) a
G+p-—m+ o +p-—mE+m+ "
(p > 2). (3.21)

Since (3.21) goes in steps of 2 and vy has two
possible values, it might seem that, for a given
order p = | + m, we would have twice as many
invariants as we did for the zerodiagonal repre-
sentation. The invariants sought have the form

T, = o ,(r +8)(r — 8+ - 4+ a,(r + 8)T+?,
(3.22a)

To = ay pi(r + 8" — 8!
+ (9T — 8). (3.22b)

[This is for even p; for odd p the final terms of (3.22a)
and (3.22b) should be interchanged.] However, if
we substitute m = p 4+ 1 into (3.21), we find that

a,,-1 = 0, and so
0=01,-1 = Qo3 = * (3.23)
[m = p 4+ 2 does not give a similar result because

the denominator in (3.21) then vanishes by (3.18).]
That is, 7, = 0, and we have only the same number
of invariants as before. Consideration of the re-
currence formula (3.21) shows that the polynomials
in the diagonal representation are given by the
formula

iin} +2a7,, _ a\P—2¢
T, = 3 g F9 =9 (3.24)

= (» — 29)! ’
where g, = 1,
go=(+2r+4 - - (v+29
X@y+1+2n)(y+3+2n) -+ (vy+2¢—1+2n),
for ¢ > 1, and {c] designates the integer part of c.
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Substituting r + s = (2/3¢&)(1 + eu)* and r —
s = v into the expression for 7', as given in (3.24),
we find

Ty yeo = Tao + (w/e) + (1/3€),
and
T, |y-3 = (2/3¢)
X [T2,0 + (¢/3)Ts. + (2u/3¢e) + (1/6¢")].

In general, if one excludes constant and linear
terms in u, one can express the invariant densities
of the diagonal representation as linear combinations
of the zerodiagonal invariant densities.

4. NOETHER’S THEOREM AND THE RELATION
BETWEEN EQUATIONS IN CONSERVATION FORM
AND CONTINUOUS TRANSFORMATION GROUPS

In 1918, Emmy Noether'? published a theorem
which affords a general method for deriving con-
servation laws and constructing temporally invariant
functionals for physical systems or fields. That is,
if one has a continuous transformation group which
leaves the action functional invariant, one can
derive conservation laws. In what follows, we use
the reverse approach, and for the zerodiagonal
case we will construct transformation groups from
the conservation laws and invariants which we
have derived in the previous sections. With these
transformation groups, one should be able to obtain
more information coneerning the solutions of specific
problems.

In the nomenclature of this paper, Noether’s
theorem™ can be stated thus:

If the functional

A = [ o, u v v dtds @D

is invariant under the family of transformations

t + et z, Y, Yi, ¥) + 0(17);} 4.2)
z—oz* =22+ 77€01(ty Ty Y, Y yf) + O(T}),
Y —_ y* =Yy + n \b(t, z, y’ yh yz) + 0(77) (4'3)

as n — O for an arbitrary region R in ({, x) space,
then, on each extremal surface of A[y],

(¥ 9L/0y. + £¢0): + (P 0£/9y. + Lo1). =0, (4.4)

12 B, Noether, “Invariante Variationsprobleme,”” Kgl. Ges.
Wiss. Nachr. Math.-Physik Kl. 2, 235 (1918).

13T, M. Gel’fand and S. V. Fomin, Calculus of Variations,
translated by R. A. Silverman (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1963). This well-written and superbly
translated book contains a very lucid and rigorous account
of Noether’s theorems (Sec. 37.5) and their applicability to
field theory problems (Secs. 37 and 38).

t— t* =
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where

¥ = ¥ — oty — €1Ys- 4.5

We identify £ with the Lagrangian density, which
in our case is

£ =3 —

By “invariant under the family of transformation”
we mean that the integral in (4.1) has the property

ay* ay*
L. .G(t*, z*, y*, 2% 3g* dt* dz*

- 9y a_y>
L£<t, 0y, 2, W) gar @)

v — k) = 30 — o’ — je).

(4.6)

We obtain an equation in conservation form, as
(4.4), for each parameter 5 in the transformation
group.

One can proceed in the opposite manner, namely,
if we are given a conservation law then we can
determine ¢,, ¢;, and ¢ which characterize the
near-identity transformation.

If we substitute (4.5) into (4.4) and expand, we
obtain

(To)e + (1), =0, (4.8)
where
I, = [L.(¢ — up)) + oo(£ — vL,)],
I = [&¢ — vpo) + oi(£ — ugL,)].

If we compare (4.8) with the equation in con-
servation form derived previously, namely (2.25),

(Tv)t - (Tu)z =0,

we obtain two equations in the three unknowns y, ¢,
and ¢,

I, = £.(¢ — ue) + @£ — v8,) = T, (4.11)
I, = &8¢ — veo) + oi(£ — ug,) = —T,, 4.12)

where we have ignored an arbitrary space-dependent
function in (4.11) and an arbitrary time-dependent
function in (4.12). Thus

(4.9

(4.10)

— T, —ugL,) — ul.L, — YL,
L£(L8 —ve, — uL,) !

Po (4.13)

—_ _Tu(cg - v£u) + vTﬂ"B'M _ \//££u
£(& — oL, — uLy) '

o (4.14)

We see immediately that the energy and mo-
mentum conservation equations are consequences
of the invariance of the action functional with
respect to comstant temporal and spatial displace-
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ments. If the Lagrangian of the system takes the
form

£ =¥ — F), (4.15)
and if we set ¢ = ¢, = 0, ¢, = constant (temporal

displacement), then (4.8) is the conservation equa-
tion for energy

0=1[£—vL) — [ve], = —3 + WF.]., (4.16)

where 3¢ = 1v® -4 F(u) is the energy density of
the physical system. If we set ¢ = ¢, = 0 and
¢, = constant (spatial displacement), then (4.8)
is the conservation equation for momentum

0 = —[ug,]: + [& — uL.), = [—w]. + [£—uL.)..
(4.17)

For Eq. (2.32) whose exact invariant densities are
given by (3.10) and illustrated in Table I, we have

=10 —-vw—3ab), £ =v, &= —(u+ i),
(4.18)
and the denominator in (4.13) and (4.14) is

D = £(& — 18, — uL.) (4.19)

= —1* — 72U + &) + (& + Lal’) (W’ +Eed)].
If T,, is substituted into (4.13) and (4.14) and
¢ = 0, then one easily finds that
(4.20)

which corresponds to the case of a constant temporal
displacement. If T, is substituted into (4.13) and
(4.14) and ¢ = 0, then again one easily finds

@ = —6 and ¢, =0,

00 =0 and ¢, = —6,

which corresponds to the case of a constant spatial
displacement. It is usually not possible to find a
polynomial form for y which, when substituted
into (4.13) and (4.14), results in the denominator
being a factor of the numerator. Thus, ¢, and ¢, can
be expressed only as rational functions of » and v.

5. ON THE RELATION BETWEEN THE EXACT
INVARIANTS AND THE ADIABATIC INVARIANT

According to the general asymptotic theory pre-
sented by one of us,’ there exists an adiabatic
tnvariant for nearly recurrent Hamiltonian systems,
expressible as a formal power series in e¢. Now the
solutions of the nonlinear partial differential equation
(3.1) are nearly recurrent, so that even before we
knew of the exact invariants, we sought an adiabatic
invariant. To lowest order we found that the
adiabatic invariant was the energy. In the next
order, we obtained [after separating the contribution

4.21)
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needed to complete the exact energy invariant—
see (5.32)] a quantity which was almost invariant,
namely the leading terms of T,

1
dx(3v"u + 7).
-1

We found that this could be made an exact invariant
by addition of a term of order ¢. With these results
we were led to seek other invariants of the same
general form and thereby came upon the pro-
cedure presented in previous sections of this paper.

In the previous work® [Eq. (B4)] the given
physical system was described by a system of
first-order ordinary differential equations x, = f(x),
with all solutions nearly recurrent. The independent
variable s represents the time and f is a vector
function of the dependent variable x. In the
present work we apply some of the theory of Ref. 9 to
(3.1) with & = 1 and adapt the notation accordingly.
The discrete vector index of Ref. 9 goes over
into the continuous independent variable z of the
present paper and summations correspondingly
become integrations. The independent variable s
becomes ¢ and the dependent variable x (in a finite-
dimensional space) becomes the pair of functions
y(@), y:(x) = plz) (in a function space). This
theory leads to a special family of topological
circles (called rings) in the function space, parame-
trized in a special way by an angle variable ¢
(here chosen to have period 2); each ring is a cyclic
family of pairs of funections y(z, ¢), p(z, ¢).

The Hamiltonian for the present problem is

1
- 1a,1.,1 a)
H= f_ld£<2p +ovetge) (6D
where ¥, is the Hamiltonian coordinate and p() is

its conjugate momentum. Hamilton’s equations of
motion are

! 1
p=—H, = —f_l dE[ye a,y: + geyi 6yye]
or
Pe = Yge + Yelee, (5.2)
where we have used
8,y; = 9y(H)/dy(x) = —&(x — &) (5.3)
and then integrated by parts. Similarly,
1
w=H=[ &pop=p (64

The adiabatic invariant

J = f}gdwp-qw
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becomes

7= [ a0 [ @wpeonee, 69

where the ¢ integration is over a particular ring
in the space of pairs of functions y(z) and p{x).

The Riemann invariants r(z, 1) = r.(z, t) and
s(z, £ = r_(z, t) introduced in Sec. 3, Eq. (3.7},
are more convenient for analysis, as they permit
one to replace the second-order equation by two
symmetrical first-order partial differential equations.
For the anslysis to be followed we redefine them with
a different additive constant as

e = 3y, + 2/39[A + ew)! — 1]}
= 3ty + u. + ez — F2'y: + O()},

and observe that they satisfy the coupled partial
differential equations

(ro)e = £[1 + 3e(ry + 1)
+ €0 + )" + OONrd.. (BT

We obtain a “more appropriate’” set of dependent
variables [denoted by y{(x) and v(x) in Sec. B5 of
Ref. 9] by observing that we can eliminate the term
=#+{r.}. on the right side of each equation of (5.7)
by transforming to an appropriate uniformly moving
frame. This is readily accomplished by replacing the
given variables r.(z, {) by the “more appropriate”
variables

(5.6)

pelz, D =rlzF v, ) and v = {. (5.8)

We thereby obtain the equations

peie = Elielpu(z, 1) + pxla F 2v, 1)}

— 3¢ {0u(z, ) + p+(z F 20, O} + O()]pusay (5.9)
where we have used the relations

Peye = 0r (2 F v, 1) = [0z, t) F ar(z, Dlomere,
(5.10)

Pz = 01z F v, t) = [azri(xa 3]

The subscript £ = x F v appended to the brackets
indicates that the substitutions are made after the
differentiations are performed. Equation (5.9) and
v, = 1 [corresponding to Eqs. (B13) of Ref. 9] show
that the time derivative of p = (p., p-) depends
upon p and v.

We now seek ‘‘nice variables”

z = Z(o, v) and ¢ = (g, v),

(Sec. B6 of Ref. 9), namely those whose time deriv-
atives can be expressed as functions of z only:
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z, = eh(z), & = o(z). (6.1

By definition a ring is generated by varying ¢ alone,
80 z i8 consiant along a ring and hence labels it.
That is, if p(z, ¢) and y,(z, ¢) in (5.5) are expressed
in terms of z, the ¢ integration is trivial. In the
work that follows we assume that 7., p., and Z, are
periodic funciions with zero mean over an interval
of 2.

Now, if we expand the variables @, w, Z,, h, in
power series in ¢, for example,

Z.=79 + 2P+ o,

and use the recursion relations given in Sec. B7 of
Ref. 9, we can show that in lowest order

6P = & =@ =y, (5.12)
h(*O) = :{:%P*pt:zy (5.13)
ZP = p,. (5.149)
Continuing to first order, we obtain
oV = W = @ =, (5.15)
79 = 1 [ f pelz F 20, ) dv']pm, (5.16)
or
Zi" = p:(z F 2u, 1) — Pzlpsi (5.17)
where
) = fo &) d’ and @) =0. (5.8)

In Egs. (5.13), (5.14), (5.16), and (5.17), the argu-
ment of p. and Z, is taken as (z, ) when not ex-
plicitly given.

Now, to evaluate the adiabatic invariant (5.5)
we first express p and y, in terms of Z, and ¢ = v,
perform the ¢ integration (where Z. is held con-
stant), and then replace Z, by an equivalent
expression in y, and y,. Using (5.17) and (5.14)
we can write

p<(r, 1) = Z.u(z, 1) — 1e[Z:(z F 20, 1) — Za(z, 1)]
X Z.u(x, ) + 0,  (5.19)
where we have set v = . Thus we obtain
Yo = r4l2) —7(2) = pu(z + ¢) — p-(z — o)
=Zz+¢) —Z(x— o)
= 3ll2-x — ) ~ Z-(z + 9)Z...(x + ¢)

— 2.+ ¢) — Zs(z — 1Z-.(z — 0)} + O().
(5.20)
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In (5.20) we have omitted the second argument ¢
and will continue to do so in the equations which
follow. Similarly, to order ¢ we obtain

Y. = rs(z) +r-(2) — delri(@) +r-(2)]* + 0() (5.20)
V. =2z + o)+ Z(x — o)

— 1Z.,(z + ¢) + Z_(z — )T

—1e{[Z(x — o) — Z_(z + 9)1Z. x(z + 0)

+ [Z.@+ ) — Ziz — 9))Z_.(z — ¢)}

+ 0(e). (5.22)

To obtain y, we integrate with respect to z and
differentiate with respect to ¢,

yv =:a¢[;[ ledxl].

We can ignore the constant in the z integration
because it contributes merely an additive function
of ¢ alone to y, and therefore nothing to (5.5), since
p is a periodic function having zero mean. Thus
the terms on the first two lines of (5.22) yield

Z.a+e) ~Z(x—¢) ~; [Ziz+¢) — 22z — )]

—fmfﬁymw+@zw~@, (5.23)
2% J,

and the terms within the braces yield
_%5 a¢{[Z__(x - S") - Z_—(x + ‘P)]Z+(x + ‘P)
+ 2z + o) — Zu(z — 9))Z-(x — o)

-/ @ 2. — @) — 2 + 2@ + o)

- fo " (Z,@ + o) — Z.(z' — 9)Z(z" — ¢)},
(5.24)

where we have integrated by parts. The last term
of (5.23) cancels two of the integral terms of (5.24),
and if we perform the ¢ differentiations, we obtain
the result

Yo =Z.(x+0) —Z(z — @)
— 1dZiz + ) — 2z — )]
— 3llZ-(z — ¢) — Z_(z + P12+ + ¢)
— [Ziz+¢) ~ Zi(x — D)Z-a(z — )} + 0().
(5.25)
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Substituting (5.20) and (5.25) into (5.5) (and
remembering that Z is constant when ¢ varies),
we obtain the result

T=2 [ d2E + 226

— 3Z3a) + Z3@) + Z2Z- + Z°Z.] + 0@},
(5.26)

where we have used the relations
1 2
[ @ [ do Aw + 0BG — o) =0,
-1 0

ﬂmﬁwwmi@=2£mAw,

for any A(z) and B(x) periodic with zero mean
over the interval of length 2.

We will now display the adiabatic invariant J
in terms of partial derivatives of the dependent
variable y. To obtain this result, we substitute
for Z, the values given in (5.14) and (5.17), namely

Z. = p. + iepe(z F 20) — 5+(2)]ps:. + O(),
and obtain the integrand j(z, ),

i@, ) = ot + o2 — Zelol + o2 + pl0-
+ p2pr — 2p.ps [Pz — 20, ) — B_]
= 2p-p-[pi(@ + 2v, ) — p.1} + O(),
where the argument of p, and p_ is (z, {) when

not specified. We now express p,(z, t) in terms of

y.(z, t) and y.(z, £) by means of (5.6),

p:(@, ) = 3[£y: + ¢ + te¥ilemer, + OF). (5.28)

When we substitute (5.28) into (5.27) and inte-
grate from ~—1 to 1, the first four terms yield

(5.27)

1
[ @i + o = 1 + o)
-1
1
= | dz 30} + o + Led) — eyt + 3vin)]
-1

+ 0(52) ’

where the argument of y, and y, on the right side
of (5.29) is (z, t). This follows because f is periodic,
that is

f_ll dz’ fx' + o, f) = f

-1t av

(5.29)

1+av

dz f(z, 1)

=fﬁu@n‘
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In a similar manner, the last two terms of (5.27)
contribute

se ) @ lopidpe — 20,0 - 5]
+ P—p—;z[l-h»(x + 2”) t) - l-7+]}
- 5 [ @ e = + 0.6 - D

X [=§:(z —v) + §.(z —v) + Fulz +v) —F(z +v)]

+ [(—ylz + v) + yulz + v))].

X [Fx +v) + 7.0z +v) — 7.(z —v) — gLz —v)]}.
(5.30)

If we integrate by parts, the terms with factors of
two different arguments just cancel against the terms
2 p_and p? p, in (5.27), and we are left with
1
€ ey a2 3
16 1 dx { yzyl + yz}-

If we combine (5.31) and (5.29) we obtain the
final result

(5.31)

J =2 do {3 + 4 + dal)]
— w2l + 3007 + 0(&).  (5.32)

Thus the adiabatic invariant J gives no new
information to order e since to this order it is
expressible in terms of exact invariants. Indeed,
this is historically how we discovered the exact in-
variants (beyond the trivial momentum and energy).
It seems likely that J, up to any order, will be a
combination of exact invariants.

6. SUMMARY AND CONCLUSIONS

A method has been given for deriving exact
invariants of a class of nonlinear one-dimensional
wave equations. Historically, we first calculated
the adiabatic invariant for a special equation which
has nearly periodic solutions and found that to
order e it was an exact tnvariant. This led us to search
for higher-order forms of an exact invariant, and
one of the main results of this paper followed,
namely, that the lemporal invariant densities were
most easily derived as polynomial solutions of the
temporal hodograph equation.
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This hodograph equation was used previously
by one of us to derive the exact solution to the
same problem,” namely, (3.1) treated as an initial-
value problem with periodic solutions in space. The
exact solution of the hodograph equation and the
perturbation solution previously developed by us’®
could only be expressed implicitly, that is, the
independent variables were expressed in terms of
the dependent variables. This implicit form is char-
acteristic in the solution of nonlinear wave prob-
lems. Furthermore, in Sec. 4 we applied Noether’s
theorem and showed how to construct continuous
transformation groups which leave the action func-
tional invariant. These groups mix the dependent
and independent variables. At present it is not
clear how one uses these groups to determine
properties of the solutions. It is interesting to
observe that in the present work we have gone
from a specific nonlinear interaction (or the equations
of motion) to the exact invariants to the equations
in conservation form. In practice, the reverse road
is often travelled, namely invariance properties of
a physical system are determined from an experiment
and one seeks the nature of the interaction.

In some unpublished calculations we used the
temporal invariants to construct ‘“half’” of the
solution to an initial-value problem. That is, assum-
ing that the basic period is separated into two
regions by one maximum and one minimum, if
we are given the solution in one region we can
construct the solution in the other region from the
values of the invariants.

Future work in this area should be directed to
using properties of the temporal invariants and
the continuous transformation groups they yield to
construct properties of the solution to specific prob-
lems and in more than one spatial dimension.
Furthermore, one should seek an algorithm for
discretizing the continuous invariants such that
they become the invariant or ‘“‘almost’” invariant
quantities for the corresponding lattice or discrete
chain of particles. To accomplish this it may be
necessary to include higher spatial derivatives into
the continuous equations before the correspondence
between the discrete and continuous system can
be made.
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The simple relationship between the wavefunctions of a system of impenetrable one-dimensional
bosons and impenetrable one-dimensional fermions is exploited to derive an expansion of the boson
reduced density matrices in terms of the fermion reduced density matrices and vice versa. This ex-
pansion is independent of the statistical ensemble used, and of the interparticle potential (subject
to the impenetrability condition). The special case of zero impenetrability radius with no other forces
is treated in detail, using the grand canonical ensemble. This leads to a natural generalization of a
formula previously found for zero temperature only, for the one-particle reduced density matrix.

T has been shown that there is a close relation-

ship between the quantum mechanical problem
of impenetrable one-dimensional bosons and that
of fermions interacting through the same forces.!
Specifically, this correspondence is the following.
To every wavefunction y° of the boson problem
there corresponds a wavefunction ¢’ of the fermion
problem and vice versa:

V@, T2y 0, 2w)
= Ay, 220 -+ 7)Y @0, 22y o0y 20), (D)
where the function A is defined by
Az, gy 0, Tw) = 15¢I<Iiszv8ign (z; — z3), -
f+1 z>0
sign (z) = 0 z=0.
1—1 z <0

A = +1 or —1 when the permutation P, defined
by the positions on the real line of z;, x;, -+~ , zy,
is even or odd, respectively. For (1) to hold, the
following conditions must be satisfied:

(i) Condition on the potential energy: It must
include a hard core of radius @ > 0, but may other-
wise be arbitrary.

(ii) Boundary conditions: The same conditions
hold for ¢* and ¢’ in the cases of “rigid wall en-
closure” (¢ = 0 at the walls) or periodicity if N
is odd. If N is even, periodicity for ¥ is associated
with antiperiodicity for the corresponding ¢' (or
vice versa).

Further, if y° is an energy eigenstate so is the
corresponding ¢', the eigenvalues being identical.

* This work was supported by the National Science
Foundation.

t On leave from the Plasma Physics Laboratory, Princeton
University, Princeton, N. J.

1 M. Girardeau, J. Math. Phys. 1, 516 (1960).

It follows from this correspondence that any prop-
erties depending only on the absolute value of the
wavefunction in configuration representation or on
the energy eigenvalues are the same for the bosons
and fermions.

Other properties, in particular those describing
distribution of momenta, are quite different, of
course. In a previous paper’ the author has investi-
gated the one-particle density matrix (closely related
to the momentum distribution) for the ground state
of the boson problem in the case when the only
forces present are the hard cores (with radius @ = 0).
This case is distinguished by a special simplicity
because the corresponding fermion problem refers
to free particles. For this reason a rather detailed
analysis was possible, including a discussion of the
behavior of the momentum distribution at the origin
of momentum space.

Let us now consider the following problem. Sup-
pose an arbitrary statistical mechanical ensemble
of bosons is given. We describe this by the prob-
abilities Py, > 0 attached to the occurrence of
states y%,. Here N refers to the total number of
particles, and the discrete index « enumerates the
different states that may occur. We assume normali-
zation in a ‘“box” @ (an interval of length L say)

fndxl fnde [¥8]* = 1. @3)

Now we consider the (reduced) density matrices
et (n =12 --) defined as follows:

@1, e, @ ol 2, e, @)
RS __i'__f f
_EZ;PNG(N—'”)! ndx,,ﬂ nde

X lbgfa(xl, tt y Lpy g1y ny)

X ‘PNbﬁ(x{y vt )xrln Tniry =" ny)' (4)

2 A, Lenard, J. Math. Phys. 5 930 (1964), hereafter
referred to as I.
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In a similar way we may define density matrices
ot for the corresponding fermion problem. This means
that we consider the wavefunctions ¢, associated
with %, via (1) and we average over a fermion
ensemble using the same probabilities Py,. Now we
raise the following question: How are the funetions
esand pf (n,m = 1,2, --+) related?

When (1) is substituted into (4) then, in addition
to the factors ¢4, and ¥!* in the integrand, we also
get the function

A(xly *tt y Tny Tntry * ny)

X Az, -+
= Az, «--,

) xr,u Tnsr, *°° xN)

T)A@], -, 2h)

N 2n
‘Hl H sign (z; — y,), ®)
where we denote by ¥, < y: < +++ < ¥z, the
numbers z,, * -« , Z,, z{, **- , =, arranged in order
of increasing value. Let J denote the union of the
diSjOint intervals (yl’ y2)7 (y3y y4), R (y2n—11 y2n)7
then the product

2n .
Hsign @ —y) = +1 =znotinJ,

j=1

(6)

-1 zinJ.
Therefore the function (5) may be rewritten
A(xli Tty x,,)A(x{, Tty xr’n)(—-l)a(") ] (7)

where ¢(J) denotes the number of those integration
variables among «,.,, Ta+s, **- , Ty which are in J.
We get then, in a clear but abbreviated notation,

Nt

- ’
AA NE" Za: PNa (N )
X fdx,.n e fde(_l)a(‘”‘pIiVa 1\5* (8)
Q Q
Consider now any integral of the form
— PR — () P
I=[do o [ao (-0 f@, 20, O

where f is some symmetric function, J is a subdomain
of Q, and ¢(J) is the number of integration variables
inside J. Obviously,
. f dz,
J

I= Z()( 1)"‘fdx1-
X dx.,.+1 .

m=0

f dz.{,  (10)

where @ — J means the part of @ outside J. Now
we write
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dx.-=fdx.-—fdx,~ f=m+1,- - ,n).
Q-7 Q J (11)

Therefore

- £ B6 ew

X f dey -« f d$m+kfd$m+k+1 e fdxn f (12)
J J Q Q

The terms with fixed m + k = j are summed first;
this gives then
f dx,'
J

I= E()( 2)'fdx1
-j;dxnf.

i=0
(13)
This formula will now be used to transform (8):

X fdxin .
a

V> ZPM n), E < ")(—2)’
N=n i=0
X f’dx,,“ M ‘/;dxn+1’
X ‘/l;dxn+,‘+1 e deN \inVa\bI\'f: (14)

If now the order of summations is interchanged,
it is recognized that the sum over N and a gives
precisely the fermion density matrix pf,;,. We con-
clude then that

(131, te )xnl P: lxl’r e ,xri)
= A(xlr MR xn)A(x{7 Sty xn)
! )1
dxn+l ‘ dxn+z
1-0
X (xly Lo 7xny xn+lv et 1xn+i[
X P:H»i ’xfy ctt xf,n Tnt1y *° " xn+i)' (15)

We repeat the definition of the region J: It is the
union of the n succeding alternate intervals formed
by the 2n points z,, - -+ , z,, x{, --- , . on the real
line.

Regarding this result we may make the following
remarks:

(a) In deriving (15) we have made use only of
the connection (1) between corresponding boson and
fermion wavefunctions. Therefore it holds regardless
of the nature of the interaction (so long as there are
hard cores present).

(b) The nature of the ensemble over which the
averaging is done is irrelevant. In particular, (15)
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also holds if the density matrices are derived from
a pure N-particle state (the ground state for in-
stance). In such a case the sum contains only a
finite number of nonvanishing terms, of course.

(c) There is no more reference in (15) to the
interval 2 (the “box”). Hence, it holds also in the
thermodynamic limit, interpreted in the usual way
for an appropriate ensemble. The passage to the
limit term-by-term can be justified under rather
general conditions.

(d) The expansion (15) also holds in reverse, i.e.,
with the superscripts b and f interchanged. This
follows from the same symmetry of (1).

In the following we make two special assumptions.
First, we restrict attention to the case of “im-
penetrable but otherwise free’’ bosons. This means
that no forces are present beside the hard cores.
The hard-core radius is taken a = 0. In this case
the corresponding fermion problem is that of com-
pletely free particles, the effect of the hard cores
automatically being taken into account by the anti-
symmetry of wavefunctions." Secondly, we assume
a grand canonical ensemble over which the averaging
(4) is defined.

A complete set of one-particle wavefunctions is
taken to be

(2/L)} sin (/L) v=24,- )

u,(x) = 7 (16)
(2/L)* Ccos (WI/L) (V = 1! 31 "')9
with the corresponding energy eigenvalues
e, = B'r%’/2mL? v=1,2,3,--). A7

The wavefunctions satisfy the boundary conditions
corresponding to “hard walls” u,(—3L)=u,(3L)=0
and form an orthonormal system in the box @ =
(—%L, IL). The N-particle wavefunctions for the
fermions are just Slater determinants
Una(Zy, Tay o+, 2,) = (ND7V det

1<n,m<N

(18)

uvn(x"l) ’

where the index o enumerates different sets {v,, v,,
-, vy} of distinet positive integers. The corre-
sponding energy is

2 2
Byo= g G +oi+ o 30 (19)
The grand canonical ensemble is defined by
PN,, = 3_1»3” exp (_ENa/kT)y (20)

where z is the fugacity, T the temperature, and

©

3=13@T,L) = > > 2 exp (—Ey./kT)

N=0 a

@n

the grand partition function.
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We now calculate p.. The sum
& 2 exp (—Eya/kT)

X 'I’I‘Vu(xly et 1xN)¢AlI’:(x{’ e (22)

may be written as (N!)™! multiplied by a sum over
all positive integers vy, vy, + -+ , v, tndependently of
each other. If the definition of ¥4, in the form of a
determinant (18) is then substituted, one may inter-
change the sums over the »; with the sum over the
NP terms which arise by expanding the product
of the two determinants. This results in the following
expression for the quantity given in (22):
(V)™ det  f(x,, zh),

1<n,m<N

) ZH)

(23)
where
fz,y) =2 ; exp (—e&,/kT)u,(us(y). (24)

It is convenient to introduce a notation borrowed
from the Fredholm theory of integral equations,

x x .o w x
I "] = det f(z., zn).

,m<N
zf, xh, e, @l T

(25)

Using this notation, we have, for the grand partition
function,

5= 3 3 exp (—Eno/kT)

«

I

> S exp (—Exa/kT)

X fdih j;dxzv I‘I/;Va(xly ,xzv)lz
Q
- 5 [aee [ g ™) = o0
y=o e 8 xly"'ny

In the last step, we used again a notation from
integral equation theory: ©jy is the Fredholm de-
terminant belonging to the kernel f(z, y) on the
interval @, the subscript calling attention to the
dependence on the kernel. In a similar way, we have
d !

> 5 e (~Exa/MT) Gy

N=n

f
>< fdxn+1"'fde lI’Iva(xly *t y Ty Tnery ° 1xN)
Q Q

@
1
f P
X ‘pNﬁ(x{) Ut 1x7’u Las1, *°° )xN) = IZ;»(N — n)!
x . . x x . e xN
>< fdxn+1 . fdef[ 1y 3 bny Latly '
Q aQ
x{y"'yxr,nxrﬁlv"'yxh’
x LY x
= 3)1‘[ 1y * n}_ (27)
xi, o, Tn
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This is the Fredholm minor of order n belonging
to the kernel f(z, ). We have now

y xﬂl P"l lx{y ‘ xr’t)

= Dp { }/:’DF (28)
ol e, 2l

This expression is the ratio of two infinite series.
It may be further simplified by means of an identity
from the theory of integral equations. Suppose we
let F(x, y) stand for the resolvent kernel belonging
to the integral equation whose kernel is f(z, y), i.e.,
F{xz, y) is the solution of

(1;1’

Fe ) + [ fo 0F ) dt = 3. @9

Then the identity® asserts that
x} , (30)

}/szF[mh o
“'!xn wlv .

.. ’x"

Dr

where the mght side is interpreted in accordance
with the notation (25).

To complete the calculation of p! it remains then
to determine F(z, y). This is easily done by expand-
ing F(x, y) in the orthonormal system wu,{(z)u, (y)
and solving for the coefficients from (29) and (24).
One obtains

- 1
Zl-{-z”‘

et exp (e,

Making use of the explicit form (16) for the eigen-
functions and (17) for the eigenvalues we can carry
out the limit L. — o when the sum turns into an

integral

lim F(z, y) =

L—roo

f ds cos s(x — %)
2r J_o 1+ 2 " exp [(B%5%)/(2mkT)]
(32)
This is, of course, the Fourier transform of the
Fermi momentum distribution for free particles,
corresponding to the general relation between the
single-particle density matrix and the momentum

distribution. The identity following from (28) and
(30),

det (x| o1 |27) (33)

1<¢,78n

f
(xl;' t xnl Pn ]xl,i' "ty xr:) =
is well known; we have presented the above deriva-
tion only because it is different from the usual ones

found in the textbooks and brings out the connec-

3 For a proof see W. A, Hurwitz, Bull. Am Math. Soc. 20,
406 (1914).
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tion to the identity (30) which, to the author’s
knowledge, has not been noted before.

Utilizing the general theorem expressed by (15),
we have now shown that

(251, Y znl Pﬁ ix;’ Tt 3;;)
= A(xly * xn)A(x;: e rxrlx)
-9 i
Z( ) f dxn+1 tte f dxnﬂ'
J
X F[”‘ T T sy x] (34
x:v e yx;:yxn+1y oy Ty

where the kernel F(z, y) is just the single-particle
density matrix for free fermions given by (32). We
shall now consider the dependence on the parameters
defining our ensemble, the temperature 7T, and
fugacity z.

We notice, first of all, that the temperature T’
enters in a quite trivial way. Specifically, for fixed 2z
but varying T, the functions pf and therefore also
p2 remain the same if distance is measured in an
appropriate (T-dependent) unit. Therefore the only
nontrivial dependence is on the parameter z. In this
regard, the situation is quite like that for the free
Fermi gas. We may call the limit of small z the case
of no degeneracy, and the limit of large z the case
of degeneracy.

The simpler of the two limiting cases is the one
of no degeneracy. In this case we can expand the
function F, given in (32), in a power series in z

Fl,y) = .;:rf.w ds cos s(z — )

X exp [—(#'s")/2mkT)] + O@")
= (/M) exp (—w(z — y*/\) + 0E), (35)

where by A we denote the thermal de Broglie wave-
length (2xh%/mkT)}. This way the series (34) also
generates a power series in z, the jth term beginning
with O(z"*%). Therefore, the dominant term is just
the first one j = 0, and so

det 2

1<4,ign A

pn= AA'p, = A4

X exp {—[r(x; — 2)’/N]}. (36

In the limit of no degeneracy, the boson and fermion
density matrices become identical (apart from the
sign factor AA’ demanded by the proper symmetry).
The function (35) is of course just the Fourier
transform of the “classical” or Maxwell-Boltzmann
velocity distribution.

The opposite limit of extreme degeneracy is
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handled in a well-known manner. There it is con-
venient to set 2 = exp (u/kT) where u is the chemical
potential per particle, and let 7 — 0. In this limit

1 ds cos s(z — %)
Fa,y) =5 | 17 exp {[(#’s*/2m) — u]/kT}

1 (2mp) 3/%
— f ds cos s(z — ¥)

2x J_ 2mu)¥/%

= [I/x(z — y)]sin {[@mu)}*/Rlz ~ 9}, @D

The number density of particles is given by the
diagonal element of the one-particle density matrix
which is, in this limit 7 — 0,

(O] o} [0) = (0] pi |0) = F(0,0) = @mu)}/xh. (38)

Thus, if we choose u so that (2mu)? = =h, the
number density is unity, and with
F(z,y) = sinx(z — y)/x(z — y) (39)
and
2 (=9 i
Ol ale) =2 %
i=0 ]!
£ £ cee
X f d:m e f d:l:,- F[O o xi] r (40)
) 0
E Ty v Ty

we recover exactly the formula (88) of I.

We wish to make two remarks on this contact
of the present paper with I. The first concerns the
proper order of limiting processes when the ‘‘zero-
temperature case’’ of a macroscopic system is under
investigation from the standpoint of statistical me-
chanics. The general rule is always to let the system
become infinitely large first (thermodynamic limit)
and only afterwards should thermodynamic param-
eters tend to special limiting values if desired. There-
fore, strictly speaking, the procedure of I was il-
legitimate inasmuch as there we have taken T = 0
(equivalent to looking at the pure ground state)
before going to the thermodynamic limit. The cor-
rect procedure is contained in this paper where,

A. LENARD

for instance, (40) arises as a limit L — « first and
then 7' — 0. From this point of view it is gratifying
that the results actually do not differ.

Our second remark concerns the discussion con-
tained in Sec. 8 of I. The final formula (88) derived
there was based on an extraneous limiting process
and derived in the final analysis from the spin
analogy of Lieb, Schultz, and Mattis. That deriva-
tion appears rather artificial and contrasts with the
derivation in the present paper which is quite
straightforward. In addition, our point of view
brings out the reason for the appearance of the
kernel (39): It is just the zero-temperature fermion
density matrix which is needed in accordance with
the general theorem (15). In our previous work,
however, the really natural representation was the
one given in Theorem 3. It was this representation
which was derived from the Toeplitz determinant
of Theorem 1. Now, the Toeplitz determinant rep-
resentation was important because it allowed the
use of Szegd’s theorem for deriving a bound on the
behavior of (x| p; |') as [x — 2’| — «. The natural
question is therefore whether a similar representation
might not hold for T > 0 also. Quite possibly the
answer is affirmative, but the author has been unable
to derive such a representation. For this reason we
do not have a good bound for o} as |z — z'| =
when T > 0, although on physical ground there
cannot be much doubt that the decrease is faster
than in the ground state. In fact, it is likely that
the decrease is exponential which implies that the
momentum distribution is an analytic function, even
in the neighborhood of zero momentum. If this is
true, then the momentum dependence suggested in
(78) of I arises only in the limit 7' — 0.
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The algebra and the caleulus pertaining to a certain class of representations of the de Sitter group is
developed. This permits us to formulate covariant field equations in de Sitter space, and, in particular,
to construct quantum mechanical equations of motion associated with particles of given spin. The
gauge principle is invoked and a spin-two field emerges, which we identify with the gravitational
field. Its coupling to sources is discussed and conservation laws are derived. The emerging nongeo-
metric theory of gravitation is compared with both the Einstein—Riemann type and other previously

proposed nongeometrical theories.

1. INTRODUCTION

ISTORICALLY speaking, theories of gravi-

tation can be grouped into two main categories.
In theories of the first category, gravitation is
regarded as a field of force generated by and acting
upon the material content of space-time. Space-time,
in turn, is looked upon as a rigid and absolute
superstructure. Thus, the motions, but not the
metrical properties, of material objects are affected
by gravitation. Furthermore, all fields are treated
on equal footing, and differ only in their laws of
propagation and in their interactions with their
respective generating currents.

The second category of theories is epitomized by
Einstein’s magnificent theory of 1916. In this
framework, gravitation is the manifestation of
space-time’s dynamical structure. The geometry
is of the Riemannian type and is fully determined
by the material content of the unmiverse. In turn,
both the motions and the metrical properties of
material objects are determined by the curvature
of space-time. Thus, gravitation assumes a unique
role among all forces of nature.

In spite of its stunning beauty and a number of
experimental verifications, there are certain dif-
ficulties inherent in the geometrical interpretation
of gravitation. First of all, in these theories the
boundary conditions for the field equations cannot
be uniquely specified without an a priori knowledge
of the topological properties of the geometry.
However, in many problems and par excellence in
cosmology, such knowledge is not available prior
to solving the field equations themselves. Secondly,
the lack of an obvious asymptotic symmetry leads
to ambiguities in the definition of the energy-
momentum tensor. Thirdly, because of its interaction

* This research was sponsored by the U. 8. Air Force under
Grant No. AF-AFOSR-385-65.

with matter fields, gravitation itself is subject to
quantization, and the fluctuations thereby intro-
duced will be transferred to the metric structure
of space-time, resulting in an ambiguous geometry
in the small. Finally, the unique status of gravitation
is bound to cause a feeling of uneasiness. In fact,
with the now known large number of matter fields,
a unified geometrical field theory appears hopeless.

In view of these difficulties connected with the
geometrical interpretation of gravity, we feel that
it may be worthwhile to reconsider the theories
where gravitation appears as a field of force in a
rigid space-time background. Of course, difficulties
are abundant in this class of theories, too. To start
with, we have to discard theories which give only an
approximate description of gravity, such as Newton’s
theory, Nordstrom’s Lorentz-scalar theory, and the
linearized tensor theory. On the other hand, non-
linear theories in a Lorentz background and formally
equivalent to Einstein’s have been proposed with
some success by Gupta' and Thirring.> Here, the
nonlinearity arises from the coupling of the tensor
field with its own energy-momentum tensor. The
Lorentz metric is unobservable, and rods and clocks
do attain Riemannian metric properties as a result
of the formal combination of the Lorentz metric
and the field tensor. However, the boundary con-
ditions are specified with respect to the Lorentz
background; and, in general, this prescription may
become incompatible with the actual resulting
Riemannian nature of the solutions.

Another class of proposals in this category (e.g.,
Weyl,? Utiyama,* Schwinger,” Sciama®) is based on
the powerful non-Abelian gauge field concept of

1 8. Gupta, Rev. Mod. Phys. 29, 334 (1957).

2 W. E. Thirring, Ann. Phys. 16, 96 (1961).

3 H. Weyl, Z. Physik 56, 330 (1929).

4 R. Utiyama, Phys. Rev. 101, 1597 (1956).

5 J. Schwinger, Phys. Rev. 130, 1253 (19632.
¢ D. W. Sciama, Rev. Mod. Phys. 36, 463 (1964).
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Yang and Mills.” Here, along with the metric
tensor, the affine connections assume a fundamental
role. They are coupled to the angular momentum
tensor, while the metric is coupled to the energy-
momentum tensor. These theories go beyond the
Riemannian theory, for the affine connections reduce
to the Christoffel symbols only when we deal with
coherent, spinless matter. The gauge theories suffer
from the same shortcoming as the previously dis-
cussed class: The metric is known only after a
complete solution is found.

The main purpose of the present paper is to
propose a novel, nongeometric theory of gravitation,
leaning heavily on group theoretical ideas. While
this theory combines the appealing features of
the nonlinear self-coupled and gauge-type theories
(mentioned in the preceding two paragraphs), it
avoids their basic pitfalls.®

Our starting point consists in taking a rigid
space-time background for which, however, we
choose not the flat Lorentz world but rather the
de Sitter world with positive curvature. We now
wish to motivate this choice of ours. It is well
known that the only nonflat world structures,
which are homogeneous and isotropic both in space
and in time, are the Riemann spaces of constant
curvature, i.e., de Sitter spaces. Cosmological obser-
vations favor positive curvature. An outstanding
feature of the de Sitter space is that it is the only
nonflat space which admits a maximal group of
motions. This can be seen by embedding the de Sitter
space in a five-dimensional flat space with signature
(+ + + — +). The maximal symmetry group is the
de Sitter group £; whose Lie algebra is isomorphic
with that of the five-dimensional proper rotation
group E;. Moreover, in the local limit and when the
curvature tends to zero, the symmetry operations
of £; reduce to those of the inhomogeneous extended
Lorentz group I£.. Thus, in a sense, the well-
established local validity of the Poincaré group can
be looked upon as a consequence of Mach’s principle:
The local isotropy and homogeneity expressed by
the Poincaré group is a reflection of a similar mass
distribution in the large. Moreover, the presence of
an asymptotic limit will allow an unambiguous
definition of the energy-momentum tensor and other
conserved quantities with reference to the curved

7 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
See also J. J. Sakurai, Ann. Phys. 11, 1 (1960) and P. Roman,
Nuovo Cimento 21, 747 (1961).

8 Some of the ideas developed below were first exgressed by
us in an essay written for the 1965 Gravity Research Founda-
tion Contest. We are indebted to the Foundation for awarding
Honorable Mention to this essay.
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space. A final ingredient in our reasoning is the
presently highly topical endeavor to merge the
internal and space-time symmetries of elementary
particles. If such attempts are to be taken seriously,
the space-time symmetry must encompass the true
(as opposed to only the local) structure of the
universe. While the covariant merger of I£, and
the internal symmetry (say, SU,;) meets with
serious difficulties, we have shown recently that a
unification comes about quite naturally and leads
to excellent physical predictions® if the space-time
symmetry is that of the de Sitter world.

The first step in our program is the development
of general field theory in a de Sitter background.
While such attempts have already a rather long
history,’” we endeavored to formulate a more
general and comprehensive framework, and a sub-
stantial part of this paper is concerned with this
topic. Special attention is paid to the gauge principle
in general and to the interpretation of £; as a
gauge group. The postulate that the total Lagrangian
be invariant under a general £; transformation with
parameters which are arbitrary functions of the
coordinates leads, in the usual manner, to the
existence of a conserved current § and a compen-
sating gauge field ¢. The latter is related to the
gravitational field, the existence of which thus
attains a raison d’étre. The conserved current con-
tains not only the matter fields but also ¢ itself.
Hence, ¢ obeys nonlinear equations. The trans-
formation properties of ¢ are, of course, different
from those of the metrie tensor, so that gravitational
and metrical effects are separated. Thereby the
crucial difficulty of the aforementioned nongeomet-
rical theories is eliminated. Actually, the boundary
value problem is that of nonlinear field equations,
with respect to a fixed and rigid de Sitter back-
ground. As a further consequence, the quantization
of gravitation reduces to a conceptually simpler
problem, no more difficult than the problem of
quantization of the Yang-Mills field.

It is shown that one can split off from ¢ a
coordinate dependent affinity. It is, in fact, this
remainder £ which is coupled to the current. Both
Z and g turn out to belong to the 35-dimensional
representation of the de Sitter group. When going

9 P. Roman and J. J. Aghassi, Phys. Letters 14, 68 (1965);
Nuovo Cimento 36, 1062 (1965); 37, 354 (1965); 38, 1092
1965).
¢ 10 See, for example, P. A. M. Dirac, Ann. Math. 36, 657
(1935) and Max Planck Festschrift, p. 339 (Berlin, 1958); E.
Schrodinger, Proc. Roy. Irish Acad. A46, 25 (1940); F.
Giirsey and T. D. Lee, Proc. Natl. Acad. Sci. U. 8. 49, 179
(1963); C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965); and the
literature quoted in these papers.
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to the local frame and taking the limit of vanishing
curvature, the de Sitter tensors decompose in such
a way that the locally significant components of
g will be identified with the components of the
gymmetric angular momentum tensor (including
gravitation) and with the components of the angular
momentum tensor, including spin. Similarly, =
decomposes in such a way that one part of it
simulates the Einstein gravitational potential tensor,
another part the total affinity (Christoffel tensor
plus Sciama’s spin-induced gauge field), and a
third part simulates the curvature tensor.

To conclude this introductory survey, we would
like to state clearly our motivation concerning the
adoption of the gauge principle as an essential
ingredient in our theory. While the use of this device
is certainly prompted by personal preference (and
perhaps even preoccupation) we feel that at the
present stage of development it is of immense
heuristic value as a guiding principle. The recent
history of particle and field theory has taught us
that we are in dire need of devices which can serve
as limitations when forms of interaction must be
selected out of a wvast class of open possibilities.
In the present case, the gauge principle serves,
first of all, the purpose of leading unambiguously
to the tensor I as the carrier of gravitational effects.
Thus, it provides the framework which brings about
the dissociation of metric and gravitation. Further-
more, it leads to a concrete form of the currents
which are automatically conserved. Finally, the use
of this principle casts our theory of gravitation into
a form which is fully analogous to the theory of
electromagnetism and, at the same time, has an
essential nonlinearity built in it in a natural way.

2. THE DE SITTER GROUP

In this section we collect the basic mathematical
tools needed to set up a field theory in de Sitter
space.

The de Sitter space will be embedded in a five-
dimensional flat pseudo-Euclidean space §; with
real coordinates z, and with the metric tensor™

guu = g22 = Gaz = —fgas = G55 = 1,
g =0 (@#0). (1)
We define g*° by
070 = &, le, ¢ = g, (12)

and we use the metric tensor to raise and lower
indices.

11 Lower case latin indices q, b, ... from the beginning of the
alphabet run from 1 to 5.
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The locus of the de Sitter space in §; is the hyper-
sphere
22" = x5 + af + a5 — 2 + 25 = R®, 2

where R is the inverse curvature of the universe.
At any point @ of this sphere a local normal unit
vector n(Q) is defined by n.(Q) dz* = 0. This
implies

n.(Q) = (1/R)x.(Q). 3

Next, we choose'” four tangential unit vectors ¢’ (),
orthogonal to n(Q),

Ne ttl (p) — 0 , <4a)
and mutually orthogonal,
t:#) ta(v) — gll!. (4b)

These t*’(Q) are unique, up to a Lorentz trans-
formation; ¢t is timelike and the other three are
spacelike. We define the local frame in the physical
Lorentz space 8, at @ by the vectors t*.

The de Sitter group £; is the set of real linear
homogeneous transformations which leave the form
(2) invariant. It is a 10-parameter noncompact
group of rank two whose Lie algebra is locally
isomorphic to that of the five-dimensional real
rotation group R, The generators are denoted'®
by M (., and satisfy the algebra

[M[an, Mi.a]l = gocM 0y + GaaM 130
GaeM 13a) . 6)

A realization of these in the function space defined
over §; is obtained by setting

- gbdM[ac] -

L[ﬂb] = :c,,(')b - xba.,. (6)

At any given point @, the subset L,,, provides the
six generators of the local homogeneous Lorentz
group £,. Furthermore, for a local observer at @,
we have x; = R, hence d; ~ 0, so that L,,, ~ Rd,,
le., we get the four generators of local translations
in 8s. Thus, the Poincaré group Ig£, is obtained
from £; by contraction,' in the limit R — o.

To facilitate the interpretation of our subsequent
work, we also point out that

9 = (1/R)n,Lia, (7

can be considered as the local tangential derivative,
since n, 8% = 0.

2 Greek indices g, », ... from the end of the alphabet run
from 1 to 4.
t}* Square brackets around indices denote antisymmetri-
zation.
¥ E. Inénii and E. P. Wigner, Proc. Natl. Acad. Sci. U, S.
39, 510 (1953); 40, 119 (1954).
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We now construct a class of representation of £,
which is to be used in our formulation of classical
(i.e., not second-quantized) field theory in de Sitter
space. The idea is to utilize the local isomorphism
of £; and R;, and to construct the representations
J sy Of the generators M, as the sum of an
orbital and an intrinsic spin term. The finite dimen-
sional representations so obtained will not be unitary
in Hilbert space, but as long as we wish only to
set up £s;-covariant quantum mechanical equations
of motion, this does not entail any difficulty. For
the purpose of second quantization, an indefinite
metric will then be needed in Hilbert space. The
details of this procedure go beyond our present
framework and will be discussed elsewhere.

We first recall that the vectors spanning an
irreducible representation of R, are eigenvectors
of the two Casimir invariants'

Ny = 3J 10/ )]
and
an, = W, 9)
where, if ¢ is the Levi-Civita tensor in §;,

W., = flabcdelJm]J[d’]~ (ga)

An alternative characterization of a representation
is given by specifying the ““coordinates” A; and A,
of the highest weight in the weight diagram. Here
A > A > 0, both being simultaneously integers
or half-integers.’® We then have

Ny = %[)\1()\1 + 3) + )\2()\2 + 1)]; (10)
N, = %()\1 + 2)()\1 + 1)0\2 + 1)>\2- (11)

The dimensionality of the representation ©jf,,, is
d =30+ D0+ DI+ — O + 5]

For a totally symmetric representation A, = 0,
M\ arbitrary integer, and we can choose for the
representative of J . the differential operator L,
given by (6). Apart from a numerical factor, this
is nothing else but the orbital angular momentum
in 85 space. The eigenfunctions spanning the weight
space of Df, can be constructed from the normal

(12)

%5 The correct definition of raising and lowering general
indices (and in particular the case of doing that with the
indices belonging to the adjoint representation) are given in
the Appendix. .

15 For tensorial representations, A; and A; are integers and
can be thought of as the number of nodes in the first and
second row of the Young diagram pertaining to the symmetric
group Ss.

P. ROMAN AND J. J. AGHASSI

vectors 7, defined by (3). We set, symbolically,
Y:‘l'n(x) = NaMa, *** Moy
- %g(a;a:naana‘ tt My .

(13)

These are traceless symmetric functions of the z,’s.
Introducing polar coordinates by

z, = R sinh o sinh 8 sin 6 cos ¢,
Z; = R sinh o sinh 8 sin @ sin o,

23 = R sinh a sinh 8 cos 6, (14)
z, = R sinh o cosh B,
z5 = R cosh a,
it is easy to show that
Y* ~ P}}i(cosh a)P;t}(cosh B)PL(cos 6)e™*
X [sinh o] '[sinh ]},  (15)

and that this is an eigenfunction of the angular
part of the 5-d’Alambertian 9,9% i.e.,

{(Sinh a)~® 3, sinh’a 4, — (sinh a)™*

X [(sinh B)~? 9gsinh’ 8 95 + (sinh B)*

1 . 1 ,) A
X (sinoaasm(iag +s_in2 06, ]}Y

= —\d + 3) 7

(16)

Here M, x, [, and m are the labels of the representa-
tions of £; C £, C Rs C R,, respectively."”

In a local frame, the representations of £5 reduce®
into direct sums of irreducible representations of £,.
The reason for this is that, in the local frame, z, ~ R
becomes an invariant component in £,, causing a
reduction in the order of Y*(z) according to how
many times the indices @), --- , a, assume the
value 5.

To simplify further work, at this point we intro-
duce the single index A = 1, 2, --- , 10 in place
of the antisymmetric pair-indices [ab], by means
of the following transcription rule'®:

17 In general, the Lorentz subgroup £, has the representa-
tions labeled by 1 < Ay, k2 < Az contained in y,3,. Thus, in
the present case, 0 < x < M0 LI <k, -1l <m <L
S 133More about the reduction is said at the beginning of

ec. 3.

¥ In general, upper case Latin indices 4, B, .- from the
beginning of the alphabet run from 0 to 10, and are used to
identify components of the adjoint representation DS,
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A ” 1 l 2 l 3 I 4 l 5 | 6 l 7 l 8 l 9 l 10
e || @3 | sy | n2 | ng | o4 | sa | ops | s | osa | 48]
We can now proceed to construct the repre- " 5. — ¥ 4.5

sentatives J, for arbitrary representations. We set
JA = LA + T4, (17)

where the ¢, are finite dimensional matrix operators,
obeying the same algebra as L, [i.e., the relations
(5)]. They are the familiar “spin matrices” of R,.
If a representation Df,, of R; is spanned by the
vectors ' [s = 1, 2, -+, d, where d is given by (12)]
then we denote®™ the matrix elements of o4 by
a4’.. The total set of commutation relations can
be summarized as

[LB) LA] = 'YBCALC; (18)
(o, o4’ = 'YBCAUc'n (19)
[LA; 08] = 0. (20)

Here v5°, are the structure constants of the group.
We note that, in particular, the 10 X 10 matrices
054, giving the representation of the spin generators
for the adjoint representation, are related to the
structure constants as

@1

20’304 = ‘YBCA-
Hence, they are totally antisymmetric, and in

particular
(21a)

We now introduce the concept of comma derivation.
Let ¢'(z) span the space® of a representation
D5, of £5. We define the comma derivative by
putting

c c
OB A4 = —04 B

V= Jup @ = Lap' (@) + 0”9 (22)
Comma derivation is commutative,
‘V.A,B = 'pr.B.A- (23)

The proof is as follows. We note that J, trans-
forms according to the adjoint representation D7},
so that ¢° o transforms according to Df,,, ® DI

Then we obtain, using (21a),
\l’r.A.B = LBLA'//' + U'AraLB\b‘
+ (o5, 55 - G'BCA 5:)‘/",0-

A similar expression, with A and B interchanged,
is obtained for ¢" 5 4. Thus, with (22) and (21a),
we easily get

20 In general, Latin lower case indices 7, s, ... from the end

of the alphabet denote components of an arbitrary repre-
sentation, and run from 1 to d.

= [Ly, LB]!V + [o4, 05]¥" + 20'BCA'P'.0-

Using (18) and (19), recombining terms via (22),
we find

‘l".B,A - 'V,A.B = ’YACB'V,C + 2‘7804'/".0-

Taking note of (21), (21a) we see that the right-hand
side vanishes, Q.E.D.

It is clear that comma derivation is the natural
generalization for £;-covariant theories of the ordi-
nary partial derivation in the g,-covariant theories.
This is to be understood in the group theoretic sense,
so that what we mean is that the role played by 9, as
a displacement operator in §,, is taken over by J,
in the group structure of £; defined over §;.

We also note that the metric ¢g*°, being an
invariant, satisfies the rule

(24)

Finally, we point out that contravariant comma
derivation is easily and consistently defined by
putting'®

gab'A = O.

\V'A = gAB#"',A- (25

3. FIELDS IN DE SITTER SPACE

The theory of fields and of quantum mechanical
equations of motion can now be easily transcribed
into an §; framework. In close analogy to the
standard £,-covariant equations of motion, we pro-
pose to take the field equations to be of the form

mz‘ﬁx,x.(x) = a(\;, A)¥ra. (@), (26)

where a, the eigenvalue of 97, for the representation
spanned by the components of ¥,,i,, is given by
Eq. (11). We also allow for possible subsidiary
conditions involving 9,.

Next, we note that, in the local frame and in the
limit of very small curvature,”* the invariants of £;
reduce to

9%, ~ 3R°0O° @7
and
I, ~ IR". (28)
Here O0° = 9,0 = —P,P* and
Uu = €Lurpr1Tirp) Oy (28a)

21 That is, keeping only the leading term in R.
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The eigenvalue® of [1° we denote by m’, and call m
the physical mass associated with the representation
4§ ., The eigenvalue of o(,,10"""' = —S%is s(s + 1),
and we call s the spin associated with the D ,,. Thus

(29)
(30)

If we go to the local rest frame, then the right-hand
side of (30) simplifies to 1R*m’s(s + 1). In view of
(11) we then can define the spin of the particle
associated with the representation to be given
by A, ie., we set

9"(,2 o~ %Rzmz,

N, ~ —iR*m’s(s + 1) — R’ey,,10™" 9, 8.

@31

This implies that the squared spin operator is
defined as being proportional to 97, when this is
taken in the local rest frame.

The other label N, we then associate, according
to (29) and (10), with the mass. This implies that
Rm and \, are linearly related.

The wavefunctions spanning a representation
of £ can always be written in the form

Y@ = Yx(ﬂﬁ)‘mx P (32)

where the coordinate independent ¢ carries the
intrinsic spin. For finite m, the A, will be very
large (because R is very large), so that the orbital
angular momentum A(A -+ 1) associated with the
pseudospherical harmonic Y* is, in general, very
large. The decomposition (32) cannot be made
unique, since for a given set A, A{, A} various values
of A; and A, are possible. But this seeming lack of
uniqueness is already present in the case of rela-
tivistic quantum mechanical equations of motion
in 8,. In that case, the various covariant realizations
of fields characterized by a given mass and spin
can be made equivalent by a suitable choice of the
subsidiary condition on the field components re-
quired to eliminate the unwanted spin components.
In the rest frame, all these equivalent realizations
reduce to a unique Foldy representation. Pursey™
has clarified this point and shown the unique
status of the subsidiary relation in the form vp* =
ms(s + 1). An““arbitrary” covariant representation
is related to the canonical ¥oldy representation by
a generalized Foldy-Wouthuysen transformation. In
our case of §; the situation is complicated by the
fact that we do not have in £; an invariant Abelian
subgroup. Nevertheless, quantum equations of motion
which involve only I, and N, give unique canonical
representations in the local rest frame. In particular,

2 Units: k = ¢ = 1.
2 D, L. Pursey, Ann. Phys. 32, 157 (1965).

S=)\2.
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the subsidiary condition (31) fixing the spin serves
the purpose of selecting a particular representation
contained in the outer product ¥* ® ¢y, This
still does not fix A;, but then, the mass (associated
with A;) cannot be “quantized” in the classical
theory and is an arbitrary parameter.

Suppose now that we consider the limiting case
of vanishing orbital angular momentum, i.e,, A = 0
so that A, = X, and A\, = M. Then, by (29) and (10)

m' = (1/R2)D\1()‘1 + 3) + (2 + D] (33)

Thus, the mass can never be zero in the £; covariant
theory.> For example, the photon would correspond
to the adjoint representation with no orbital mo-
mentum, i.e,, A = 0,A, = 1, \, = 1, giving m, = 6/R,
and the neutrino would have A = 0, X\, = }, A\, = },
giving m, = 5/2R. Taking the radius of the universe
to be B ~ 10*® cm, the numerical values are of the
order 10™® g, way below the experimental lower
limits.

Fields associated with A = 0 and thus having
a mass of the order m ~ 1/R we call minimal mass
fields. In the limit of vanishing curvature, they
correspond to the zero-mass fields of the £, covariant
theories. Such fields require a special treatment.
In the R = o limit of the corresponding £, theory,
massless fields are subject to (a) subsidiary con-
ditions to eliminate timelike polarizations, and (b)
gauge transformations of the second kind. The
latter, in conjunction with (a), prevent longitudinal
polarizations from becoming physically observable,
i.e., from becoming coupled to observable currents
in the Lagrangian. For example, in case of a massless
symmetric tensor field ¢,,, whose source is the
current j,,, we have the field equations

D ? 'puv = jﬂ’ ?
the subsidiary condition
aﬂ ‘pll’ = 0’

and the gauge transformation
Yo = ¥ + 0, A, + 3, A
The gauge is restricted by the constraint condition
A, = 0,

so that the subsidiary condition is consistent with
the gauge transformation and we also have

Dz'p;,u = Jure
¥ The only exception is X = Ay = \; = 0, the trivial one-
dimensional representation. However, no physical particle
corresponds to this, because in view of (32), the field associated
with this case is a constant.
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Conservation of the current, 8,j,, = 0 is guaranteed
by the subsidiary condition.

However, if the mass does not vanish (as is the
case in our framework), we are faced with the
incompatibility of the subsidiary condition and
the gauge transformation. In the usual theory,
gauge transformation is then abandoned, and this
results in a coupling between the longitudinal and
transversal components of the field. On the other
hand, gauge transformations are supposedly the
raison d’étre for certain fundamental fields in
nature,”® and we feel forced to adopt an alternative
procedure. That is, we keep the gauge transformation
and give up the subsidiary condition as an exact
relation. The procedure is explained within the
limiting £, framework, taking the above example
of the tensor field. We now have

(I:]2 - mz)‘Puv = jﬂv"

(i) Define now, as before, the gauge transformed
field

Yoo = ¥ + 0 A, + 0, A,
(i) Require that
(O = M) = fure
(ii)) For consistency, restrict A, by
(O° — mMHA, = 0.

(iv) The expression 8,¥,, is not gauge invariant,
since

9u ‘l/;,w = 0y ¥uw + mzAr + 4, 3, Au'

Hence, we cannot postulate 8,¢,, = 0 for all gauges.
(v) However, due to (iv) and (iii), the expression
(O® — m* 4.4, ts gauge invariant, and can be
given a unique value.
(vi) In fact, we must set

(D2 - mz) au ‘l’ur = 0

S0 as to obtain a conserved current for the source
of the physical field ¢,,.

In a sense, (vi) plays the role of a subsidiary
condition. In this scheme, decoupling of the longi-
tudinal components is again only approximate and
holds only locally. But the timelike components are
eliminated by the gauge transformation itself. This
can be seen by considering the Fourier transform
of the field and gauge (J,, and A,) and noting that
in the local rest frame ¢,, and ¢,, + k,A, + k, A, are
physically equivalent. But k, is timelike, hence

% See Ref. 7. Actually, we derive the gravitational field
from a gauge principle.
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kX, and k,X, are additions to the timelike com-
ponents of ,,, making these unaccessible to physical
observation.

The argument, as presented above, carries over
to the case of the £; theory, by simply making the
replacements

9, — J4 (comma derivation),

0° — (2/R")9N,.
The procedure is then applicable to all physical
fields, with minimal mass or otherwise, and arbitrary

spin as defined by (31), and is indeed adopted
in all cases.

4. THE GAUGE PRINCIPLE

Let us consider an £, covariant theory and assume
that the Lagrangian density is invariant under a
set, of linear homogeneous transformations of the
field components, with constant coefficients:

W) = ¢ = A;:"P;-
We assume that the contragradient transformation is

W) =¥ =AY, (34b)

(34a)

so that
AVAL = 8. (35)

We then say that the system possesses a phase
symmetry group. For an infinitesimal transformation

A} = & + e, (lel € 1) (36)

the resulting variation in the Lagrangian density
has the form ~eaj 9,9%". The assumed invariance
gives the conservation law

a, 5#: = 0. (37)

If we allow the A’s to be space-time functions,
we call the group a gauge group. As is well known,
the Lagrangian density will cease to be invariant
unless an additional field is introduced and coupled
to the ¢ field components in a well-prescribed
manner. To see this we note that now

3, (¥)' = A}, 9, ¥ + ¥ 3, A,

and the second term breaks the invariance. Thus,
the compensating field ¢,;* must be entered into
the Lagrangian so that 4,4, is replaced everywhere
by

au'p:' 4 Du‘lbi = au‘l’:‘ - ‘P#ik‘h:)
.4 = D' = a4 + ou'd.

(38a)
(38b)
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If we subject ¢ to the accompanying transformation

(0 = A Al + AV (0.47),  (39)
then the invariance is restored, because then®®
D,(¢s) = a.¢)) — (‘P»ik)'(‘/’k)'

= A;(0u¥: — @ui'¥r) = A} Dy, (40)
It is convenient to set

A} = exp (—i®)) = exp (—i0,X.;"), (41)

where X, are the Hermitian generators of the
symmetry group which gives rise to at least one
additively econserved quantity and renders the
system phase invariant. If the parameters 8, are
made functions of space-time, we obtain a repre-
sentation of the gauge group. The summation index
m runs from 1 to p, where p is the dimensionality of
the adjoint representation. Equation (39) now
becomes

(¢#ik), = A,;'A;:'(ﬂo;u‘l - Zauét)
= A’;’A;’[‘Puil - i(auGM)Xmil]- (42)

When the gauge group is not Abelian, i.e., the X,,
do not commute, the ¢ field will earry the charge
generated by the group, ie., adds to the current
its own contribution so that the total charge is
conserved. The ¢ field obeys a nonlinear field
equation and current conservation assumes the
form®’

'3»8“1 + <Puii3piz - ‘Pplk(g“k = 0. (43)

After this review of the gauge principle,”® we
now consider its application to our £, framework.
Clearly, all considerations can be carried over by
simply changing the 9, derivatives to the appropriate
comma derivatives. Thus, in case of a gauge group,
the comma derivative must be replaced in the
Lagrangian by what we call the bar derivalive:

l)0".‘4 - '//rIA = Ipr.A - QoAr’xbt: (443‘)
V=V = 9.+ ey (44b)

These are the analogs of (38a, b) and the tran-
scriptions of the subsequent formulas are also
obvious.

26 Note that in consequence of (35),
A¥ g, AL = — AL 9, AY.

27 J. Schwinger, Phys. Rev. 125, 1043 (1962).

28 Although (apart from some points of presentation) the
preceding paragraphs are standard knowledge, we found it
worthwhile to put them in context. More details can be found,
for example, In an article by B. 8. DeWitt, in Relativity,
Groups, and Topology (Gordon and Breach Science Publishers,
Inc., New York, 1964), p. 585.
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Of particular interest to us is the case when the
gauge group is generated by the space-time sym-
metry itself, i.e., by the de Sitter group £;. Then
the indices 7, s, ete. carry tensor (or spinor) character
and the A’s are representations of £;. In addition,
because the index A belongs in the gauge group,
a factor Aj appears in the transformation of ¢ .
That is, it suffers a homogeneous gauge trans-
formation of the first kind,

(W15)" = AVAS Y 14-

The compensating ¢ field is now subject to a gauge
transformation of the second kind,

(‘PBr.), = Ag’A:’(At'¢Ap' + A:’.A)'

Using the representation of type (41) for the A,
we have alternatively

(45)

(46)

(‘PBr’)’ = Ag’A:IA:’[‘PApt - 1’(4);).4]

= A,‘,»A:'A’:,[m,,‘ + GG.AJGil]' (47)

Here, 6, are the 10 parameters of the £; trans-
formation, J¢ the anti-Hermitian generators. Note
that we have 65 4, rather than 6;,,: the 8 are unob-
servable gauge functions; hence they do not couple
to the gauge field and do not contribute to the
gauge current.

The field ¢,,° is associated with a current g*',
which is conserved in the sense that

3A'A|A = (gA'l.A + ¢Art:gA‘: - ‘PA,sgArt = 0. (48)

5. THEORY OF GRAVITATION

As we point out toward the end of Sec. 4, the
group &£; of general de Sitter transformations gives
rise to a gauge group and the compensating gauge
field ¢,,° serves as an affinity to define a covariant
derivation which we identify with the pertinent case
of bar differentiation,

‘/’rlA = wr.A - ‘PAr‘\ba- (49)

This provides a prescription to couple the ¢ field
to all other fields that carry £; transformation
properties, i.e., span representations of £;. However,
the gauge is not completely arbitrary: a preferred
coordinate system exists which helps to fix the
gauge. This preferred system is, in fact, a Cartesian
coordinate system in the §; space, defined up to
an arbitrary £; transformation, i.e., up to a phase
transformation. To show that such a system exists,
it is sufficient to show that in it the metric g,, is
not, affected by the group. Now, in a Cartesian
system we indeed find, using (49) and (24),
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Jobia = Job.a — Paa Jeb — Pab Jac
= T @hab — PAba = 0;

where the last step follows from the fact that ¢4
belongs to the adjoint representation which is
antisymmetric.

Thus, in general, we can split off a coordinate
dependent affinity from ¢,,°. This affinity will be,
in effect, the Christoffel symbol related to the
particular preferred coordinate system. We can
then write

Vata = Vo,u — {Aab}¢b - zAab'//b- (50)
If we define semicolon derivation by putting
Vord = Vau — {a'} ¥, (51)
then (50) assumes the form
Vaia = VYaiu — Eub‘ﬁb- (52)

Here Z,,° is a tensor, not an affinity, because it is
the difference of two affinities,

{Aab } . (53)

Actually, Z,., = ¢,.24.° is antisymmetric in the
indices ab, because Z, belongs to the adjoint
representation.”® Since the index A, when expressed
by vector indices ¢, d is given as [cd] according to
the transliteration table of Sec. 2, we can write

(59
Thus, Z belongs to the 35-dimensional representation
AN o= 2, A, = 2 of £,. This then also implies that
(55)

In view of the role of ¥ as discussed above, we
now tdentify this object with the gravitational field.
Gravitons, clearly, will have spin two.*

We now show that the field Z,,° is associated
with a conserved current g*°,. Let us choose the
Lagrangian density of the coupled matter and
gravitational fields to be®!

L = 3¢ 6¢.'° + Im’R?y'y,
+ 32..00624%1 + 322 (56)

This is easily seen to be gauge invariant and we
obtain the field equations:

b b
EAa = QPsa —

Zaes = Zicattasl

Ziabiteal = Z(edllabl

29 We can say that Z,(«s; is the antisymmetric part of
@aab Whereas {4ap} = % gasy4 18 its symmetric part. Note that
in g non-Cartesian system tensors of £; do not have definite
symmetry.

3 Since we take the gravitational field to be minimal mass
field, Eq. (33) gives for the mass of the graviton mg = 4/R.

31 From the manipulations explained in the Appendix, it
follows that ¢,/ = g64 y, .
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'ﬁ’mm — m’R*y" = 0, (67
zAub]G‘G _ LLZRZEAab - (gAnb. (58)

Here m and pu are the masses of the ¥ and Z field,
respectively,®® and the current is of the form

SMb = 'YGrl'yGab(‘l"xbrlA - ‘l/rw.lA)
+ 'YGab'YaFH(EHcdzrch - Emduzpdc)- (59)

The v are the Clebsch-Gordan coefficients which
couple to the G component of the adjoint repre-
sentation. Note that J contains the = field, both
explicitly (in the second term) and also implicitly
through the bar derivatives (in the first term).
Hence, the gravitational field equation (58) is non-
linear, as expected.

From the form (59) of the current and from (57),
one then obtains, through a somewhat lengthy
calculation—using also the commutation relations
of the Clebsch—-Gordan coeflicients,

gAub;A = 0. (60)

This expresses in a neat form the conservation of the
total current.

We now integrate this equation over a 3-volume
in 8. The volume element is

@ Vider = €rauron dz’ da® da’. (61)

Now, the integral of (60) gives, by Gauss’ theorem
(in the preferred frame),
de[dG]S[da]ab = Const, (62)
which contains contributions from both the matter
field ¢ and from gravitation. Equation (62) is the
integral conservation law.
Incidentally, the total current .., coupled to
3,45 Obviously carries the same symmetry as Z4.s,
Le., belongs to the \; = \, = 2 representation. Thus,

(63)

It is instructive to consider the £, transformation
properties of the various components of the total
current in the local frame. We set

Jaar = Jicartar) = Jtabitear-

Hios) = fdsvlcdkﬂtan[m- (64)
Now, locally, only the d*Vy,s; components of the
volume element (62) are large. In particular, d°V s
is timelike, i.e., involves integration over spacelike
local surfaces. Thus, we see that 3C;,; is essentially
the conventional energy-momentum vector and
3C;,, the angular momentum tensor. Hence, Ji.sitvs1
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can be identified with the conventional symmetric
energy-momentum tensor density, and g5, With
the angular-momentum tensor density. It includes
spin. Finally, gi,i.n does not couple to the large
components of the volume element; hence it has
little local physical significance.

In a similar way® we can convince ourselves that,
in the local weak limit, 2.5 simulates the
Einstein gravitational potential (g,, — 7..), Where
74 18 the Lorentz metric. Further, Zi.s,, simulates
L,,., the total affinity made up from the Christoffel
connection plus Sciama’s spin-induced gauge field®
Sure Finally, Z,,)1-- simulates the curvature tensor
R,,... Thus, in the local frame and in the limiting case
of weak gravitational fields our theory is equivalent
to Einstein’s theory as modified by Sciama.

6. CONCLUDING COMMENTS

We believe that the advantage of our proposed
theory lies mainly in the fact that the symmetry
properties of the » field prevent it from becoming
coupled to the metric (i.e., unlike the Einstein
potential). The theory does not possess a geometrical
interpretation. The boundary value problem is well
defined.

In the large, our theory is clearly not equivalent
to a Riemannian theory. There exists a preferred
frame, or equivalently, ¢ can be split into = and
the Christoffel affinity. This, in turn, allows an
unambiguous separation of the inertial effects (due
to the choice of the coordinate system) and the
truly gravitational effects (due to the T field). In
an observer’s local frame the two effects are tempo-
rarily tied together to simulate an apparent equiv-
alence principle. However, if the observer performs
long-range observations, say on the cosmological
scale (such as a galactic red-shift measurement),
he can immediately discover the existence of the
preferred frame which is attached to the de Sitter
substratum. This then allows him to discriminate
between inertial and gravitational effects. The equiv-
alence principle seems to appear only in case of
observations performed on a local level, such as in
the “elevator experiment.” This, however, does not
constitute a ‘“‘complete’” observation since, by
limiting the domain of observation, the nature of
the global (asymptotic) symmetry is lost.

The principle of general relativity will hold only
in the restricted sense of general covariance with
respect to arbitrary coordinate transformations
belonging to the de Sitter space group. On the other

® Going back, say, to Egs. (58) and (52).
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hand, the difference between the presently proposed
and the standard theory consist only in effects of
the order of 1/R, at least for the linearized theory.
As for truly nonlinear effects, a check such as the
computation of the perihelion motion will have
to be performed.

We note that the existence of the preferred frame
also allows an unambiguous definition and compu-
tation of the current related to the Z field. In this
context, we point out that the matter fields ¢ are
coupled to = and to the Christoffel symbol in an
identical way, so that the equality of gravitational
and inertial mass is guaranteed.

Finally, we observe that, although local gravi-
tational effects are unrelated to geometry, global
geometrical effects of gravitation are encompassed,
insofar as they are absorbed into the observed
curvature in the large. This is so because the
numerical value of R will be modified by the non-
linear effects of coupling to the sources. The cos-
mology is that of a de Sitter world, without being
tied down in detail to the material contents of
the universe. Nevertheless, by relating the curvature
to some average of local interactions, Mach’s
principle is, in a sense, satisfled. We feel that our
scheme contains the seeds of a unified theory of
the macro- and micro-world.

APPENDIX

The caleulus of £5 is greatly facilitated by making
use of the Clebsch-Gordan coefficients. Let us
denote the Clebsch—Gordan coefficient which couples
the r, s component of a representation Df .,,. to the
outer product of the p and ¢ components of the
representation ©f,, by the symbol +,,”. Here
rns=12 .., dandpt=12 --+,d In
particular, if ©,,.,. is the one-dimensional repre-
sentation, i.e., if A} = A\, = 0, we shall use the symbol
vo”*. For short, we also write

=" (A1)

We define the inverse g,, by demanding

Il

g = . (A2)
The g,, is symmetric (antisymmetric) in its indices
according to whether the representation ©f,, is
a tensor (spinor) representation.

The raising of an index of a component of a
vector belonging to an arbitrary representation can
now be consistently written by setting

o= gV (A3)
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Similarly,
¢f = gu\V- (A4)
The invariance of ¥,y is guaranteed by the orthog-

onality of the Clebsch—Gordan coefficients.
In particular, we can write

Jap = ’YA[ab]'YB[mgIabuedn (A5)
where
Jiab)fed] = %(gacgba - gaagu)- (A6)
Hence,
Jap = 'VA[nb]'YB[abl- (A7)
As a special consequence, we have
L, = ’YA““ann (AS)
or
L, = 7AlablLA- (A9)

This is equivalent to the transliteration table given
in Sec. 2.

It is worth mentioning the connection between
the spin generators and the Clebsch-Gordan coef-
ficients. We have

rs rs

= Y4 (A].O)

provided the product Df,, & Df,, contains the
adjoint representation only once. If, however,
D)} is contained in the product twice (i.e., when
M = A = 0), then

20’4

re {re]

204" = 7a (Al1)
or
20_4;-. = 'YA("),

(A12)
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according to whether Df,,, is a tensor or spinor
representation, respectively.?® Equation (21) is a
special case of (A10).

Finally, we note that the covariant derivation
given by Eq. (52) can be extended to arbitrary
representations by writing

‘PIIA = 'pnA - 24-'\0” (A13)

where
24 = v 24 (A19)

Note added in proof: While the manuscript of this
paper was in press, Prof. D. D, Ivanenko of Moscow
kindly called our attention to a large body of work
by Soviet authors which is closely related to various
ideas expressed in our paper. Some results of these
authors can be found, for example, in the following
papers: D. Ivanenko, and G. H. A. Sokolik, Zh.
Eksperim, i Teor. Fiz. 41, 10 (1961); A. M. Brodskii,
D. Ivanenko, and G. A. Sokolik, Zh. Eksperim,
i Teor. Fig. 41, 1307 (1961) [English Transl.: Soviet
Phys.—JETP 4, 930 (1962)]. D. Ivanenko, Progr.
Theoret, Phys. (Kyoto) Suppl., p. 161 (1965); G. A.
Sokolik and N. P. Konopleva, Nucl. Phys. 72,
667 (1965); A. M. Brodskii, D. Ivanenko, Compt.
Rend. Acad. Bulgare Sci. 17, 801 (1964); B. N.
Frolov, Vestn. Mosk. Univ. 6, 48 (1963). See also
various articles in the “Theses of the 2nd Soviet
Gravit. Conf.” (Thilissi University, 1965). We also
wish to call attention to a related paper by Y.
Tanikawa, Progr. Theoret. Phys. (Kyoto) Suppl.,

p. 609 (1965).

# (rg) means symmetrization.
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It is shown that to each finite-dimensional single-valued irreducible representation of SL(3, R)
there corresponds an infinite-dimensional representation which is unitary on any member of a certain
one-parameter family of Hilbert spaces. We set up an eigenfunction problem for the members of a
three-parameter family of Hilbert subspaces on which such a unitary representation is irreducible.
The relatively simple but especially important three-dimensional case is worked out completely.
Unitary irreducible representations for the unimodular real linear groups SL(N, R) with N > 3 and
their subgroups can be obtained by generalizing the formalism described here.

1. INTRODUCTION

T has been conjectured that SL(3, R), the non-
compact group of real unimodular linear trans-
formations in three dimensions, may be of signif-
icance for the over-all classification of one-particle
hadron states' and may also govern the approximate
symmetry between physical states associated with
strong quantum-gravitational fields.> Such appli-
cations to physics require appropriate unitary
irreducible representations of SL(3, R), or equiva-
lently, appropriate Hermitian irreducible representa-
tions for the generators of the SL(3, R) Lie algebra.
Thus, a problem of current interest in mathematical
physics is to find solutions of the Lie equations

Gy, Gs] = 1C45"Gp 1.1

for sets of eight SL(3, R) generators G, = G.,
Hermitian on some suitably prescribed (separable)
Hilbert space. In the case of SL(3, R), the structure
constants in (1.1),

CABD = CABCQCDy
Qp = 'I'IECAEFCBFE
=diag™ —1, -1, -1,1,1,1, 1, 1 = 7,
(1.3)

follow from the totally antisymmetric C, 5, with
the independent nonvanishing components®

0123 = 0146 = 0247 = Cns = Czsa = 0367 = 1,
0166 = C257 = Vg, 0384 = 2.

* Present address: Drexel Institute of Technology,
Philadelphia, Pennsylvania.

1Y. Dothan, M. Gell-mann, and Y. Ne’eman, Phys.
Letters 17, 148 (1965).

2 G. Rosen, Nuovo Cimento 42, 797 (1966).

3 Nonzero structure constants have an odd number of
indices equal to 1, 2, or 3, so with the @ “metric’’ used to raise
enumerator indices, we have C zr = — C4BC Tt should be
remarked that our indices 1, 2, 3 label the generators for the
0(3) subgroup of SL(3, R), the maximal compact subgroup
contained in SL(3, R).

(1.2)

1.4)

Because SL(3, R) is semisimple and noncompact,*
it has no finite-dimensional unitary representation®
and the Cartan—Weyl theory for obtaining unitary
irreducible representations of compact semisimple

Lie groups does not apply. A complete unitary ir-

4 The (unique) compact complex extension of SL(3, R) is
SU(3) (of order eight, rank two, and semisimple), Lie
equations for the Hermitian generators of SU(3) being
obtained formally from Egs. (1) by making the correspondence
Gy —GyfA =1,2,3,G, —-iG4 [A = 4,5, 6,7, 8 and letting
some of the nonzero structure constants C,z” (namely, those
with A, B > 3 > D) absorb a minus sign. Thus our Hermitian
representation problem for the SL(3, R) Lie algebra can be
viewed as an unusual SU(3) representation problem, one with
Hermitian operators required for the three generators of an
0(3) subgroup but anti-Hermitian operators required for the
other five generators of the SU(3) Lie algebra. Although we do
not have general recourse to a compact complex extension
point of view in order to derive our unitary representations of
SL(3, R), the compact complex extension point of view is
often very useful.5-7 [In this connection, it is interesting that
the homogeneous Lorentz group was analyzed via its compact
complex extension O(4) in the original representation theory
by P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447
(1936).]

& This is true with the usual meaning of “unitary,” namely,
unitary on a bonafide Hilbert space endowed with a positive-
definite metric. However, if the physical application were to
admit a pseudo-Hilbert space with an indefinite metric, then
finite-dimensional ‘‘unitary” irreducible representations of
SL(3, R) could readily be constructed from the finite-dimen-
sional unitary irreducible representations of SU(3). One
simply takes the eight Hermitian generators G4 =G, for a
representation of the SU(3) Lie algebra and sets

[1 O]x?;A (4 = 1,2, 3]
I
[O Y x G, [A=4,5,671,8].
i 0

It followst that these generators satisfy the SL(3, R) Lie
equations as a consequence of the SU(3) Lie equations and are
“Hermitian’’ with respect to the indefinite metric

> = [1 O}xn, G =X,

0 -1
as a congequence of hermicity of the éA.
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reducible representation theory for SL(2, R), the
universal covering group for proper homogeneous
Lorentztransformationsin three-dimensional (2 + 1)
Minkowski space, has been given by Bargmann in
a very beautiful and comprehensive paper.® Despite
the fact that the latter work is an ideal prototype
for noncompact Lie group unitary representation
theory, such complete results as those obtained by
Bargmann for rank one SL(2, B) are not practical
for rank two SL(3, R); in addition to much greater
technical complications, a comprehensive theory for
SL(3, R) would have to feature a classification of
unitary irreducible representations based on all pairs
of admissible values for the two functionally inde-
pendent (quadratic and cubic) Casimir invariants,
bringing in many complicated representations which
are manifestly academic in character and unlikely
to be of physical interest. Our objective in the present
paper is to study the rather obvious and most natural
unitary representations of SL(3, R), to obtain a
formalism which is probably sufficient for physical
applications although in no sense exhaustive from
the mathematical point of view.

In general, for a unitary representation the Her-
mitian generators G, satisfying (1) must be described
either by differential operators or by equivalent
infinite matrices, derived by taking the differential
operators between a complete set of functions in the

(&, 1
¥ +‘/§7
(MAkZ'YA) = "")’3"|"Y8

v 4+

|

1
_74+E75 e o A
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Hilbert space. A large class of unitary representations
of SL(3, R), each representation in the form of a set
of eight Hermitian differential operators which act
on a certain properly defined Hilbert space of in-
finitely differentiable functions, is presented in Sec.
2. Then in Sec. 3 we formulate the general eigen-
function problem for obtaining irreducible constit-
uents from these unitary representations of SL(3, E).
Finally, the unitary irreducible representations
which are most likely to be of physical interest are
analyzed in greater detail in Sec. 4.

2. GENERAL FORM OF THE UNITARY
REPRESENTATIONS

All finite-dimensional (necessarily nonunitary) sin-
gle-valued irreducible representations of SL(3, R)
are well known.” The eight generators of these finite-
dimensional single-valued irreducible representations
are n X 7 real traceless matrices M ;' = (M,.")*,
M,;’ = 0, which satisfy real Lie equations, differing
formally from Egs. (1) only by a trivial factor 7,

MA;,;MB;I - MBkiMAil = CABDMDI:I- (21)

As the simplest faithful single-valued irreducible
representations of SL(3, R), we have the fundamental
representation with » = 3 (employing a conjunctive
expression for the eight matrices, the 4’s merely
being arbitrary numerical parameters),

\
Y+ =TT

2.2)

- +9°

_2 s
v37 |

¢ V. Bargmann, Ann. Math. 48, 568 (1947). This paper
was originally intended to be Part I of an even more detailed
work. On page 571 Bargmann remarks: “In an appendix to
Part II, Dirac’s expansor representations are analyzed...,”
referring to the paper by P. A. M. Dirac, Proc. Roy. Soc.
(London) A183, 284 (1945). Although Bargmann’s Part II
was never published, a Dirac expansor treatment of SL(2, R)
has been given recently by A. O. Barut and C. Fronsdal, Proc.
Roy. Soc. (London) A287, 532 (1965). The latter work does
not exhibit the unitary irreducible representations in explicit
form, employing abstract Hilbert space notation throughout
and disregarding questions of Hilbert space definition or actual
representation realizability, but has the virtue of being readily
accessible to a physicist. A formal Dirac expansor treatment of
SU(3), a noncompact complex extension of SU(3) differing
essentially from SL(3, R) (see remarks at the end of Sec. 2),
has also been worked out along the same lines by C. Fronsdal,
Proc. Roy. Soc. (London) A288, 98 (1965). In contrast to the
method of Bargmann, which focuses analysis on the definition
of proper Hilbert spaces and the eigenfunctions of the general-
ized Casimir invariants, the sufficiency of a unitary irreducible
representation theory based on purely formal Dirac expansors
is always open to question, especially for the more complicated
noncorapact groups [e.g., SL(3, R)].

? For example, see: M. Hamermesh, “Group Theory”
(Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1964), pp. 378-391. A basis tensor for a finite-
dimensional single-valued irreducible representation of
SL(3, R) has N, totally symmetric covariant (upper) indices,
N totally symmetric contravariant (lower) indices, and is
totally traceless with respect to the contraction of any pair of
covarlant and contravariant indices. Expressed in terms of
Ny and N, the dimension of the irreducible representation »
and the two independent Casimir constants gy and gy [see
our Eqgs. (3.4) and (3.5)] are given by

n = %(Nl + 1)(N2 + 1)(N1 + N, 4+ 2),
gan = #(N: + NN, + N3) + 4N, + N,),
Quamn = lfe(N? — Ng) + %(Nsz - N1N§)

+ 8(Ny — N)(N: + N + D).

These formulas are identical to those for SU(3).¢ We note that
gurn), = 0 (implying that N, = N,) is a necessary and sufficient
condition for a representation to be self-conjugate.
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the associated cogradient representation with n = 6,

[ 2
' + 75‘7“ 0 0
0 2+ 24 0
v3
4 5
0 0 ——
(MAI:I'YA) — \/g
-+ v+ 0
0 ~y' 4+ 7 v+
Y+ 0 -7+

and the adjoint representation with n = 8, M,,' =
—C.'. A generalized contragradient or conjugate
representation with the generators

Mdl,l = —AikA“MA,'i (2.4)

is associated with each finite-dimensional representa-
tion, where A;; = A, is a nonsingular n X n matrix
of real constants (A" = A", the inverse matrix),
the conjugate representation (2.4) also satisfying
Eqgs. (2.1) for any nonsingular symmetrical A matrix.
A representation is self-conjugate (again in a general
gense) if there exists a particular A matrix for which
M,' = M,'; no such A matrix exists for either
representation (2.2) or (2.3), but the adjoint rep-

resentation M,,' = —Cy' is self-conjugate with
A.‘ih‘= Q,’,‘.
Let £ = (&, - -, £) denote a real n-tuple [n > 3]

of coordinates which label the points of an n-dimen-
sional simply connected compact real manifold 9,
having the topology of a hollow n ball. Let 91, be
desecribed analytically in terms of a positive-definite
real homogeneous function of the second degree in
£ o(F) = \p(\E), for all real A > 0, by I,

(£ a < ¢(¥) < b}, where a and b are ﬁxed real con-
stants such that 0 < @ < b < «. Thus, all compact
hypersurfaces ¢(¥) = ¢, = const are contained in
i, for a < ¢. < b and the boundary of 91, is given
by

= {£:¢() = b} — {£:¢() =a}, (2.5)

the two boundmg hypersurfaces being related homeo-
morphically by the scale dilatation & — (b/a)t.
Defined over 91, the eight differential operators
associated with a single-valued n-dimensional ir-
reducible representation of SL(3, R)

GERALD ROSEN

2¢y° + 2¢° 0 -2y + 2¢
-2y +2¢° 29" +2¢¢ 0
0 -7+ 27" 2+ 2
; (2.3)
_2__ 5 a2 7 1 (]
37 ¥+ Y + v
2 7 4 L 05 3
Y+ Y V57 Y 4+
A 8 8 4__1__ 5
v 4+ Y 4y ¥ AT

Gy = ’iEkMAkl(a/ail) (2.6)

satisfy (1.1) as a consequence of (2.1) and therefore
constitute an infinite-dimensional representation of
SL(3, R).

We seek Hilbert function spaces on which the
SL(3, R) generators (2.6) act as Hermitian operators.
Let C°/9M, denote the space of infinitely differenti-
able complex-valued functions of ¥ over 9W,. Let
9% = 9(n; &) be the Hilbert space in C°/91,
composed of homogeneous functions of degree
—L(n + 7¢) in ¥ with the parameter ¢, free to range
continuously over the real line,

N = Nn; «)
= {f = f(¥) in C°/M,; f(A\E) = N4
for all real A > 0}, 2.7

and with an inner product for any of the Hilbert
spaces defined by

9 Ef:m ff*gdz‘ .
(2.8)

Then the generators (2.6) have the closure property
on any member of the one-parameter family of
Hilbert spaces (2.7), {G.f} in 9t for all f in 9T, and
are Hermitian on 90 with the inner product (2.8),

ag®
[f and ¢ in 97).

(f, G4g) = (G.f, g), because we have
(f, GAg) - (GAfJ g)
= [ [e(r B+ Lg)ar e
= iMAk' f asm f gkf*g da’z(f); (2.9)
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where the reality and traceless properties of the
matrices M ,,’ are used together with the divergence
theorem; the final integral in (2.9) vanishes as a
consequence of (2.5) with f and ¢ in 9%, for then the
differential integrand £f*g do,(¥) is invariant with
respect to the simple scale dilatation ¥ — (b/a)£.

Hence, to each finite-dimensional single-valued
irreducible representation of SL(3, R) there cor-
responds a family of infinite-dimensional representa-
tions, parameterized above by the real constant e,.
Although members of the family of Hilbert spaces
(2.7) that are associated with different values of ¢
are “equivalent” in the sense of a unitary phase
transformation, matrix elements of the Hermitian
generators (2.6) depend essentially on the parameter
€, and thus different values of ¢ characterize in-
equivalent unitary representations. These unitary
representations of SL(3, R) are generally reducible
with respect to the Hilbert spaces (2.7), but unitary
representations with the generators (2.6) are irre-
ducible on certain suitably prescribed Hilbert sub-
spaces 9t contained in 9. With respect to such re-
stricted subspaces 9, the representations are most
useful for physical applications, and in Sec. 3 we
formulate appropriate conditions for the functions
that compose an 7. Solution of the latter conditions
provides a general and systematic analytical pro-
cedure for extracting irreducible constituent rep-
resentations from the reducible unitary representa-
tions defined above.

It is important to note that no eigenfunction of
any of the five generators G,, G4, G, G, G5 can be
contained in the Hilbert space 9T (or in any subspace
of 9t). For example, if f in 9 were an eigenfunction
of the Hermitian generator G,, G.f = Af with X real,
then the commutation relation

[Go, (Gi + Go)] = —i(G + Go)  (2.10)

obtained from the Lie equations (1.1) implies that
g = (G, + G,)f would also be an eigenfunction of
the Hermitian generator G,, Guig = (A — 7)g but
with a complex eigenvalue, and this is impossible.
A similar argument shows that no eigenfunction of
the other generators G4 with A > 4 can be contained
in the Hilbert space . Thus, essentially unlike a
Hilbert space unitary representation for compact
SU(3) or a noncompact ,§(JJ(3)°, eigenfunctions of
two commuting generators (for example, G, and G,
generators that would be diagonalized in a formal
treatment of the Lie algebra along the lines suggested
by Cartan’s theory) are not contained in the rep-
resentation space for a unitary representation of
SL(3, R), and so a basis for a unitary irreducible
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representation of SL(3, B) cannot be defined in terms
of the simultaneous eigenfunctions associated with
two commuting generators. Rather, to set up a basis
for an SL(3, R) unitary irreducible representation,
it is necessary to work exclusively with the generators
G4, G,, G5 of the maximal compact subgroup. Func-
tions which compose the basis of a unitary irreduci-
ble representation are most conveniently taken to be
eigenfunctions of, say, G5 and (G} + G + G3), the
simplest operator function of @y, G,, G; that com-
mutes with G, and are labeled accordingly, as shown
by example in Sec. 4.

3. GENERAL FORMULATION OF THE
EIGENFUNCTION PROBLEM FOR UNITARY
IRREDUCIBLE REPRESENTATIONS

Schur’s lemma holds good for infinite-dimensional
representations of a Lie group, and thus any opera-
tor which commutes with the eight generators of
SL(3, R) must act like a constant on the basis of an
irreducible representation. Conversely, a representa-
tion of SL(3, R) is irreducible if all operators which
commute with the eight generators behave like
constants over the entire Hilbert space of the rep-
resentation. It follows that all simultaneous eigen-
functions of a maximal set of operators which com-
mute with the eight generators, eigenfunctions
associated with g fixed set of eigenvalues, would con-
stitute a restricted Hilbert space 9t contained in 9
for an irreducible representation, Our program in the
following is to formulate the appropriate eigenfunc-
tion problem which serves to define such restricted
Hilbert spaces 9.

There are two distinct types of operators that
commute with the eight generators of SL(3, R).
First, we have the generalized Casimir invariants,
operator-valued functions of the generators them-
selves. As shown in Appendix A, the quadratic and
cubic Casimir invariants [denoted by (II) and (III),
respectively] suffice as a complete set of functionally
independent Casimir invariants for SL(3, R). In
addition to the generalized Casimir invariants, we
also have the dilatation point transformations
& — AE with A a real positive parameter and the
parity point transformation £ — —§, linear trans-
formations of 9, which leave our representations
with the form (2.6) invariant. No other linear point
transformation of 9, leaves (2.6) invariant as this
is guaranteed by the irreducibility of the n-dimen-
sional generators M ,,' in (2.6) and Schur’s lemma.
Invariance of the function space with respect to
dilatation transformations is already a property of
(2.7) and therefore of any subspace, but the discrete
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parity transformation ¥ — —§& is effective in the
decomposition of N for irreducible representations.
Hence a unitary representation of SL(3, R) with the
generators (2.6) is irreducible with respect to any
member of a three-parameter family of restricted
Hilbert spaces

N = An; &, &, &; =*)
= {f = f(§) in Nn; ¢); ADf = «f,

IDf = «f; f((— & = £/}, @.1)
where the ¢'s are real parameters which characterize
a unitary irreducible representation.

Let us work out explicit operator expressions for
the quadratic and cubic Casimir invariants, (A3)

and (A4) in Appendix A. By putting (2.6) into the
latter formulas, we obtain the representations

ing i )
@M =M, M F P
- 9
+ £¢M LM Eor (3.2)
@) = iszABC(g‘MA,fMB,.*MC,J a%,
. ; 9%
+ 3EA£'MAA’MBiko.'l W

3
+ EWEhE;MAq,MthMCiI 35%&’”7{’) ’ (3-3)
where terms in (3.3) have been combined by ex-
ploiting the total symmetry of @*”°. These dif-
ferential operator representations of the Casimir
invariants are simplified somewhat by making use
of the relations

MM = qund, (3.4)
QABCMAiiMBikMCEl = Q(III)ai') (3'5)

with g1, and gui, the two independent Casimir
constants characteristic of the n-dimensional ir-
reducible representation.” By symmetrizing, split-
ting off the diagonal part of each tensorial coefficient,
and evoking (3.4) and (3.5), Egs. (3.2) and (3.3)
become

@ =&+ ]-)_lfl(m(X2 + nX)
iy kO
+ EEQ!':' 6£k asl ’ (3-6)
dm = i(n+ D7+ 2) 7 'qum (X + 3nX*+n'X)
-1 $si ki az
+ in 4+ 972X + mEER,; aE" o
63

segshed ikl
+ Lt Wohi agi ask agl ’

3.7
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where
X = £(3/38) (3.8)
and with the introduction of the irreducible (totally
symmetric and traceless) tensorial quantities
Q.M = QLMY + MM
— 30+ D7qun(8i8; + 818,  (3.9)
= 30 (M MM ot + MM Mot
+ Ma" MM + Ma"Mai' M)
— 3 + D7quin (835, + 8:87),  (3.10)
Wt =% 32 0°M,, MM

Perm
9.k,

- Tlif(n + 4)_1 Z E 6iRhi“

Perm Perm
g.h,t 7.k

- in + 2)—1('” + 1)—14(111) Z 5:5252'-

Perm
2.h, 1

(3.11)

The tensor character of (3.9) is expressed by
Mdithikl + MAith'hkl
- ]V[Ath-’iM - MAthiikh = O; (3-12)

similar equations expressing the tensor character
of (3.10) and (3.11). That the latter quantities are
traceless follows from the orthonormality conditions

MAklMBlk = %nQ([I)QAB and QABCQBC = 0.

Returning to the eigenfunction problem for re-
stricted Hilbert spaces (3.1) with the Casimir in-
variants represented by (3.6) and (3.7), we see that
for any f in 9(n; €),

Xf = —n + d0)f, (3.13)

and hence with (3.6) and (3.7) the eigenfunction
conditions in (3.1) reduce to

L% kl azf
FEQ"
=[e + 10 + ) + D'qunlf, (3.149)
a0 g i ikl a3f
3 Ehf W agi agk a&.t
cpigip kO
+ aln + 2)EER; agk 651
= [& + i‘él(nz +&n+ 1)+ 2)_19<111)]f-
(3.15)

Equations (3.14) and (3.15) serve to define the re-
stricted Hilbert spaces (3.1) for irreducible rep-
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resentations, admissible values of the real param-
eters e; and ¢ appearing as eigenvalues with f in
N(n; &) and with f of definite parity. By virtue of
the high symmetry featured by the irreducible ten-
sorial coefficients Q.,;*', R:;*', and W,,."*', explicit
solution of this eigenfunction problem is feasible for
the lower-dimensional cases. We illustrate this in
Sec. 4 by working out the relatively simple but
especially important three-dimensional case in com-
plete detail.

4. UNITARY IRREDUCIBLE REPRESENTATIONS
ASSOCIATED WITH T(I:-IE THREE-DIMENSIONAL
ASE

For the case n = 3 with the M ,,' given by (2.2),
straightforward calculation shows that the tensorial
quantities (3.9), (3.10), and (3.11) all vanish,

Qz‘i“ = 0,

Equations (4.1) express the major simplifying and
distinguishing feature of the three-dimensional case,
for which the conditions (3.14) and (3.15) reduce to

(4.2)
4.3)

R,','kl = 0, W,}”;“” = 0. (4.1)

—769 + &)gun,

€ =

——3-15-51(9 + 6?)9(111) 3

€ =

with f in 9(n; ¢) but otherwise unrestricted. We
have’ qur = 16/3 and g1y = 160/9 for n = 3, and
thus the family of restricted Hilbert spaces (3.1)
becomes

N = N3; e, =301 + ), —2( + ¥); =],

44

a member determined by the single real parameter
6, |—o < ¢ < + ], and the parity of the con-
stituent functions. These unitary irreducible rep-
resentations correspond qualitatively to the con-
tinuous Bargmann® series C? for SL(2, R); the signa-
ture of the quadratic Casimir invariant defined by
{(A3) is —2 [opposite in sign to Bargmann’s definition
for SL(2, R)], so that admissible values of the quad-
ratic Casimir invariant run continuously toward
— o with (4.4). By putting (2.2) into (2.6), we obtain
the following representation for the Hermitian gen-
erators:

G1=z‘(z“‘~a%§—€5%),
G =it
=i g-ed),
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¢ = i(s‘a%—s’g%),
G=tleZrel-wl),
G=ilthred),

G=ife Zred), 5
while the constituent functions of the family of

restricted Hilbert spaces (4.4) can be expressed
generically in terms of an infinite series in spherical
harmonics

=10 = T X 5% (4.6)
where the f!’s are complex constants,
. _ <1+%>(Z—m>!]*
¥ =y, 0, 0) = Lr In (b/a)(l + m)!
X p—§(3+ie,)P»ln(cos a)e—imu’ (4.7)
and
£ = psin f cosw, £ = psin fsinw, 4.8)

£ = pcos 9.

Summation with regard to the index I in (4.6) is
extended over all even nonnegative integers or over
all odd positive integers, depending on the parity
of the Hilbert space (4.4). In view of the spherical
coordinates (4.8), the most convenient bounding
hypersurfaces for 91; [compatible with the conditions
stated above Eq. (2.5)] are obtained by setting
¢(¥) = p°, and then it follows that the functions
(4.7) comprise an orthonormal set with respect to
the inner product (2.8),

Wy YD) = Snmbin- 4.9)

Individual spherical harmonics in (4.6) are eigen-
functions for the main commuting operators as-
sociated with the O(3) subgroup,

G+ G+ G =1+ Dy, (4.10)

Gy = my7, (4.11)

the hypersurfaces p = const being invariant varieties
for the O(3) subgroup. However, the other genera-
tors G4, G5, Go, G4, G5 in (4.5) have nonvanishing
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off-diagonal matrix elements, as well as diagonal
matrix elements, with regard to the ! index in the
basis (4.7). Computation of the matrix elements for
the latter generators in (4.5) is facilitated by trans-
forming to differential operators in spherical co-
ordinates and making use of well-known connection
formulas for the spherical harmonics, such as the
formulas

ayz [(l + 1)2 - mz]il m
36 40+ 1F — 1| YUm

lez - 2] I+ Dy @12

sin § ==

and

(+ 1 —m
a7 = 1) ¥

l2 _ 2 1% n
+ [Z’ltﬂl‘:l Yi~r-
We present the results of the matrix element com-
putation for

o = [0

(4.13)

G = _z‘/g [(1 — 3 cos’ 0)p56;

a
-+ 3 cos O sin 6 60] (4.14)

with
(ZF - )(l + 1)}5,,

2 274
~ B i - B

1 —m ]
X [g_(l_—_——)f)r—-—ﬂ] 51—1.1'“
v3 o 12— m’ |
-3 lee — 22V — 1)] 4—l'—2_:z'}i

r_ 1\2 — el
X [%UT:D]?—'_:ELIJ al’—].,l‘l-l}amm

More generally, the matrix element (7., G.y7%) may
be nonzero for any of the generators with A =
1,2,30nlyif I = I’ and (m — m’) = O or ==1, while
for any of the generators with A = 4, 5, 6, 7, 8 only
if @ —0V)=0o0r +2and (m — m') = 0 or £2.
Finally, we note that the set of linear combinations

(4.15)
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of the generators in (A1) takes a particularly simple
form for the three-dimensional case, namely,

S = E"a%, — i85 5"— (4.16)

5. CONCLUDING REMARKS

Alluded to in the literature’ as ‘“ladder representa-
tions,” for the three-dimensional case discussed
in the preceding section the generators G,, G,, Gs
take a form equivalent to the direct sum of ap infinite
sequence of unitary irreducible O(3) representations,
with [ either even or odd for all members in the se-
quence, while the generators G, G5, Gs, G, Gs
interrelate adjacent O(3) representations with Al = 2
in the sequence. For the n-dimensional cases with
n > 6 formulated in Sec. 3, the generators Gy, G;, G,
also take a form equivalent to the direct sum of an
infinite sequence of unitary irreducible O(3) rep-
resentations, but the generators Gy, Gs, Gs, G4, G5 act
on the basis of the representations in a considerably
more complicated manner with no “ladderlike” rela-
tiopship being in evidence. Likewise, the eigenvalue
spectra of the Casimir invariants (II) and (IIT) on
N (n; ¢), defining the irreducible representations, are
very rich and complicated spectra, as exemplified by
the n = 8 case of the adjoint representation (with
qan = 12, qum = 0, and R,-,‘H = 0), for which
the conditions (3.14) and (3.15) reduce to

R ey A (VRS AR
ROV i = ol 62
where
Qut = HCMCL + €0 — 3ok +1ts)
= jeMe, + ot — ate
— 80,0 + 3(3is; 4 818 (5.3
and
Wan™ = —% 20 @*%°C,'Cai’Cei,  (5.4)

Perm

g.h, i
with the tensorial quantities (5.3) and (5.4) having
many nonzero components. From general considera-
tions one would expect all sufficiently large negative
values to be admissible for the eigenvalue e, of the
quadratic Casimir invariant for every family of
unitary irreducible representations associated with
the n-dimensional case.
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Even more complicated unitary irreducible rep-
resentations can be obtained by forming the direct
sum of a number of representations (2.6), each
defined over a distinet manifold 9, and regarding
these direct sum representations as defined in the
natural (and thus unitary) way on the associated
direct-product manifold. The eigenfunction problem
for extracting new irreducible constituent representa-
tions from these manifestly reducible unitary rep-
resentations is made formidable from the standpoint
of explicit solution by cross terms of differential
operators which appear in the generalized Casimir
invariants. This is illustrated by the (3 @ 3)-dimen-
sional case with the generators represented by

d

G- L), 9

where the M,,' are defined by (2.2); the quadratic
Casimir invariant (A3) is thus

Y LAY 9
. 1 a2 _]_~ 62 )
“+ 45 7 (621 a'ﬂk - 3 aEl: 3’77

é(»_a_)” ¢ 9
+3 7 61}& “}‘4"} a’lk

with manifestly involved eigenfunctions in the Hil-
bert space

B D 3; ¢, &) = {f = {(§ n) in C°/Mye;
(B, ) = NEHUYHOE n) = NCHO1(E wn)
for all real A > 0}

(5.6)

(5.7

owing to the cross term in (5.6).

In the Appendixes we treat some mathematical
topies which are closely related to the representations
discussed in the preceding sections. Finally, it should
be noted that unitary irreducible representations
for the unimodular real linear groups SL{N, R) with
N > 3 and their subgroups can be obtained by
generalizing the formalism described here.
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APPENDIX A. GENERALIZED CASIMIR INVARIANTS

Certain operator-valued functions of the eight
generators for SL(3, R) satisfying (1.1), the so-
called “generalized Casimir invariants,” commute
with all of the generators and thus play a key role
in the reduction theory discussed in Sec. 3. In order
to facilitate a systematic construction of the gen-
eralized Casimir invariants for SL(3, R), we intro-
duce the set of linear combinations of the generators

S:E'zl‘i(G4+'\}—3-G5>;

Sg = ‘2%(@3 + Gy,

8 =5 (=G + 6,

8 =5 (~Gs + G,
g=L(-a+La), (AD)
8 = 5 (G, + G,

S =5 (@ + 6,

S: = ’21"2' (—Gy + Gs),

A
Ii

Since we have 82 = 8} + S} + S} = 0, only eight
of the operators (Al) are linearly independent, but
as a consequence of (1.1) and (1.4) the latter opera-
tors satisfy the symmetrical set of commutation
relations

[8:, Si] = 888: — &8t (A2)
which show that S} has the transformation character
of a mixed tensor with respect to real unimodular
transformations in three dimensions. It follows im-
mediately from (A2) that any <nvariant operator
function of 8;, formed by contraction with no free
tensor indices, commutes with all the S;. By making
use of (Al) and bearing in mind that S2 = 0, the
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simplest nontrivial Casimir invariants are obtained

as®

2858 = —04%G,Gs = —G,G* = (I), (A3)
4ie,. 6™/ 838,87 = 4i(S:S:S: + 82882
= —QABCGAGBGC = (m); (A4)

where the totally symmetric 2“?° = Q,5¢ has the
independent nonvanishing components

Qs = Qizg = Qoge = Qayr = Quor = Qgrs = 1,

1 2
Qs = Roos = &, Qs = Qss = —%,

v3 V3 A5)

1
Qpoy = Qugs = _1; Qsse = Qyrr = ‘_73- ;
2
Qags = Q555 = "‘_\/g )

and satisfies the equations

QABCQBC = QABB =0, QAEFQEFB = 2§Q5§; (A6)
QABECPCE + QBCECFAE + QCAE'CFBE = 0. (A7)

The other linear combination of invariants cubic in
the 8S;,

S:8.8: — 828:8: = 38:8:, (A8)

is not functionally independent of the quantity (A3).
Furthermore, all higher-order invariants, containing
more than three S} in a totally contracted term, de-
pend functionally on (A3) and (A4) by virtue of
the Cayley operator equations®

8 Qur expression (A4) for the cubic Casimir invariant agrees
with the less explicit result obtained by L. C. Biedenharn, J.
Math. Phys. 4, 436 (1963). The latter reference, an exposition
of Racah’s construction method for obtaining bonafide and
independent invariants for SU(N ), applies equally well to the
noncompact SL(N, R). Unfortunately, some of the recent
literature on semisimple Lie groups [for example, A. Salam,
in  Theoretical Physics (International Atomic Energy
Agency, Vienna, 1963), p. 178] still suggests the quantity
CADL CBE, (CF LG, (g Gy as a useful cubic Casimir invariant,
supposed to be functionally independent of (A3) for a semi-
simple Lie group of rank two. However, the latter quantity is
actually proportional to (A3), for we have

4P CPE 0T 1 GuGs G
= —%C’ADE(CBEFCFCD + Co’rC7 R GuGsGe
= %CADECEDFCFCBGAGBGC
= —6C*""°G, (sl = 36iG.G",

where we have used the quadratic Lie identities, the definition
part of (1.3), and a relation derived from (1.1) and (1.3),
CABC G G = — 16 G4 )

9 8. Okubo, Progr. Theor. Phys. (Kyoto) 27, 949 (1962), in
particular, pp. 961-965. An interesting but less detailed
derivation is given by H. Goldberg and Y. Lehrer-Ilamed, J.
Math. Phys. 4, 501 (1963).
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S:8;87 = 38:8; + (38:8! — 2)8;

+ (38:8:87 — 8;80) 8, (A9)
S:8I8h = —38:8% + (38;8) — 2)8¢
+ (3S:818; + 88D,  (Al0)

implied by (A2). Hence the quadratic and cubic
Casimir invariants (A3) and (A4) suffice as a com-
plete set of functionally independent operators which
commute with all eight of the SL(3, R) generators,
in the abstract algebraic sense and thus also for
any representation.

APPENDIX B. THE SL(3, R) GROUPS OF MOTIONS

Let 8, denote the unbounded n-dimensional real
manifold with Euclidean topology, and let the points
of 8, be labeled by the real n-tuple of coordinates
E=(, -, 8) [~ <§ < =] 9m, the real
manifold defined in Sec. 2, is a certain compact sub-
space contained in §,. Associated with each unitary
representation of SL(3, R) given by (2.6) with (2.7)
and (2.8) is an SL(3, R) group of linear and homo-
geneous point transformations of §,,,

g —F =Tt = (exp iz’ G )t
= (exp — z*'M,),'t"
= (6; - xAMA,,l + %xA:L'BMAkiMB,-I '+' . ')Ek, (Bl)

in which the real n X n unimodular transformation
matrix T,' depends on the eight group parameters
z* but not on the manifold points £ In the following
we analyze the geometrical possibilities for §, and
thus for 91, admitted by the groups of point trans-
formations (Bl). The nature of such admissible
Riemannian geometries for 91, with n > 8 is of prac-
tical interest in connection with the reduction theory
for irreducible representations outlined in Sec. 3
and of academic interest in connection with the
Bargmann® treatment of SL(2, R), where all rep-
resentations are interpreted fundamentally as home-
omorphic point transformations on a certain mani-
fold.

For values of n > 8 we introduce a Riemannian
metric into 8, with the line element ds® = g,,d&*d¢’.
Then the point transformations (B1) can be viewed
as a group of motions mapping 8, homeomorphically
into itself with preservation of metrical structure
provided that the metric tensor g;; = g;; satisfies
the Killing equations

(9 if
koAkl P + M,ulgz; + Mulgu = 0.

o (B2)
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The integrability conditions for these Killing equa-
tions are satisfied identically,’®*and thus the system
of Egs. (B2) is completely integrable. It follows from
the general theory of linear partial differential equa-
tions that solutions of (B2) exist for all n > 8 and
that the metric tensor for a solution of (B2) can be
prescribed arbitrarily on a certain suitable (n — m)-
dimensional subspace §,.. contained in 8, where
m denotes the generic rank of the Killing vector
array £'M,;*. (We have m = 7 for the n = 8 adjoint
representation and m less than or equal to 8 for all
representations with n > 8.) Furthermore, as a
consequence of m being less than » for all representa-
tions with n > 8, the groups of motions are intransi-
tive, there being certain invariant varieties (sub-
manifolds in 8,) which are mapped homeomorphically
into themselves with preservation of their metrical
structure under the point transformations (Bl).
Since the group is noncompact, the invariant vari-
eties are manifestly open in §,, and no invariant
variety can be wholly contained in the compact sub-
space 9%,. From (B2) we obtain

EkMAkl QEPI =

3-5 ""iGA‘;’ = 07

(B3)

where
v = ¢ = giiE‘Eis B4)

and hence the hypersurfaces ¢ = const are generally
invariant varieties. The additional conditions that
the metric tensor be positive-definite and such that

9::(\E) = 9.8, det (g:)) = 1, (B5)

are compatible with (B2) and do not alter the general
integrability of these equations, in effect being re-
strictive conditions for the metric tensor prescribed
(otherwise arbitrarily) in the (n — m)-dimensional
subspace S

To obtain an admissible positive-definite metric
tensor which satisfies the conditions (B35), we first
write the solution to (B2) in the integrated form

g:i()) = Tc‘kTitgkl(g)l (B6)

where £ is related to ¥ by the transformation matrix
T,' according to (B1). Now let the (n — m)-dimen-
sional subspace 8,_,. be such that (\f) is contained

10 The computation specializes the proof of a theorem by
L. Bianchi, Lezioni sulla Teoria dei Gruppi Continut Finiti di
Transformaziont (Spoerri, Pisa, 1918), pp. 522-524. Formally,
one applies the operator equations

a ., 3 3
[SkMAkh Egj , € MBal '55:‘:‘ = CABD?Eanki 5{1

to g¢; and invokes (B2) to eliminate the partial derivatives of
the metric tensor; the resulting algebraic equations in g;; are
satisfied identlcall’y.
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in §,_, for all real A > 0 if £ is contained in §,_,,,
and let the metric tensor take on the values

02 = 8, for Ein S, ..
Then (B6) becomes

0,8 = S TITY for (IF) = Eindn (B9)

®B7)

in which the point ¥ is associated with a trans-
formation matrix T,’ that maps ¥ into a § in the
“conical” subspace $.-m. Let us introduce a smooth
system of coordinates (w,, --- , w.—m) that covers
8._., the points in §,_, being prescribed by n dif-
ferentiable functions £ = £'(w;, -+ , wa_m) Such that
the rank of the matrix (8¢'/dw;) equals (n — m). By
recalling (B1), we can then rewrite the metric tensor
(B8) in an explicit parametric form

hid

gi; = 2 (exp — #*M,)*(exp — a’My)*  (BY)
kel
at the point
Ek = (exp + xAMA)lkéz(wl’ et ;wn-m)- (BIO)

Parametric redundaney in the latter equation with
the n §'s expressed in terms of (n — m + 8) 2’s and
«'s can be eliminated by a suitable definition for the
domain of the z’s which would involve (8 — m)
analytical functional constraints between them. With
(B9) and (B10) the (positive-definite) function (B4)
reduces to

'lb(i) = ?_-,:1 [ék(“’ly tet ;wn—m)]2) (Bl]-)
where £ is given by (B10). It is readily seen that the
invariant variety ¢ = 0 bounds the domain of def-
inition for the positive-definite metric tensor (B9)
and (B10), so that all points in §, are not accessible
to the form (B10), irrespective of how suitably one
prescribes the (n — m)-dimensional conical subspace
S Generally, it is impossible to aseribe a positive-
definite metric tensor globally throughout all of
8., or even globally throughout all of 9, but it is
still interesting that one can write down a positive-
definite metric tensor (B9) for an open and un-
bounded subspace of §,, notwithstanding the non-
compact character of SL(3, R).

For the self-conjugate representations (necessarily
with » > 8) we have

ﬂﬁ'[,ﬂ,! == (Blz)

where A;; = A;; is a nonsingular # X n matrix of real
constants (A’ = A", the inverse matrix) and an
immediate solution of (B2) is g;; = A;. Such metric
tensors A,; are indefinite, and conversely, no positive-

- AikA“MA si:
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definite metric tensor which satisfies (B2) and (B5)
can be identically constant over 917, for any of the
n > 8 representations, self-conjugate or otherwise.
Asin the general case, an invariant variety associated
with these admissible indefinite Riemannian geo-
metries cannot be wholly contained in the compact
subspace 91T,; not only does the SL(3, R) group of
point transformations rule out the possibility of any
compact invariant variety, but the noncompact
character of the group also rules out the possibility
of a one-parameter family of positive-definite and
homogeneous invariant varieties [like (B11)] which
pass through every point in 91,

APPENDIX C: ALGEBRAIC MAKEUP OF THE
QUADRATIC CASIMIR INVARIANT WITH
RESPECT TO A LINEAR DECOMPOSITION

Let us consider the Casimir invariant (A3) in the
form

(H)=F1+F2+I'3+I‘4+I'5, (Cl)
where the I'’s are the Hermitian operators
I, =6 — G, r.=G6 — &,
=G — G, TI.=-G, (C2)
r; = —G:.

The remarkable feature of the decomposition (C1)
is that commutators of the IYs involve only one
independent operator, for by using Egs. (1.1) and
(1.4), we obtain

i[Te, Ts] = kap, (C3)
in which
[0 1 -1 0 0
-1 0 1 00
ke)=| 1 =1 0 0 0 (C4)
0 0 0 00
L 0 0 0 0 0
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and

A = 4(G1G7Gs + G2G6G8

+ GGG + G5G.GY), (C5)
the latter operator being Hermitian as a consequence
of (C3) and the hermicity of the generators G,.
This A operator (C5) takes an interesting sym-
metrical form in terms of the linear combinations of
generators (Al)

a =S (siss + susisy + ssisy

— S:{S1S:} — S3{8:81} — 8i{8:8:})), (C6)
which is equivalent to
a =S s + sss) + S8y

— S {818} — S:{8:80) — Si{SS). (O

Equation (C7) shows that A is something of a ““skew
counterpart’”’ to the cubic Casimir invariant (A4),
even though A does not have the latter operator’s
marked property of commuting with all the gen-
erators. By using Eqs. (A2) to achieve a maximum
reduction of (C6), we find

A = 164(57838;: — SiS:S3). (C8)
It follows immediately from (C8) that A vanishes for
the unitary representation (2.6) with n = 3 and thus
with 8 given by (4.16). More generally however, A
is finite and although the I'-commutators (C3) are
strikingly simple compared to the G-commutators
(1.1), higher-order commutators involving I'y, T, T,
and A are considerably more complicated, with no
closure property being evident for a finite number of
operators generated by commutation.
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For highly elongated rods or flat platelets, there is a range of scattering angles in which the inten-
sity of small-angle x-ray scattering cannot be conveniently approximated either by techniques nor-
mally used at small scattering angles or by the asymptotic expansion which is applicable in the
outer part of the scattering curve. Expressions for the scattered intensity from rods and platelets
have therefore been developed which can be used both at these intermediate scattering angles and
also in the outer portion of the small-angle x-ray scattering curve.

INTRODUCTION

ALCULATIONS of the predicted scattered
intensity are often useful for analyzing small-
angle x-ray scattering data.

In a recent investigation of the small-angle x-ray
scattering from an assembly of identical, independ-
ent, randomly oriented right cylinders with arbitrary
cross section and uniform electron density,’ an ex-
pression was developed which approximated the
scattered intensity in the outer part of the scattering
curve. When all dimensions of the cylinder are
nearly equal in magnitude, this expression will be
applicable at scattering angles which satisfy the
condition AL.;, > 1, where h = 47A™" sin (¢/2), A
is the x-ray wavelength, ¢ is the scattering angle, and
L. 18 the smallest length characterizing the cylinder.

For highly elongated cylinders, which will be
called rods, the asymptotic expansion of Ref. 1 is
found to be useful only for 4 values which satisfy
the more restrictive condition A(Lumi.)’/(®@D) <K 1,
where vD is the length of the cylinder and D is
the maximum diameter of the cross section—that is,
the length of the longest line that can be contained
in the cross section. Since for a rod L,;./(vD) < 1,
the range of applicability of the asymptotic expan-
sion of Ref. 1 is considerably reduced for rods.

A similar effect is found for very thin generalized
cylinders, which will be referred to as platelets. In
this case, the asymptotic expansion of Ref. 1 can
be applied only when Av°D >> 1.

For greatly elongated or flattened cylinders, there
is a range of h values such that for one or more
dimensions L; of the cylinders, AL; >> 1, even though
the general asymptotic expansion of Ref. 1 cannot
be applied. These values of % ordinarily are so large
that expansions in powers of h are not practical.
Special expressions for the scattered intensity in this
angular range are therefore desirable.

* This work was supported by the National Science Founda-

tion.
1P. W. Schmidt, J. Math. Phys. 6, 424 (1965).

Approximations for the scattered intensity have
previously been developed for elongated rods®-® for
the range of angles for which D >> 1 and AD < 1.
(Both these conditions can be satisfied only when
v >> 1.) While these relations are useful within the
angular region in which they apply, the error cannot
always be easily estimated. Also, it would be pref-
erable to have expressions for the intensity which
are useful both in this range of A and also for all
larger values of h.

For thin platelets, only the limiting form of the
expression for the scattering from generalized cyl-
inders has been evaluated.*

In the calculations described below, expressions
for the scattered intensity are developed which can
be applied to rods and platelets at all A values for
which, in the above notation, AL; >> 1 for certain
lengths L, regardless of the magnitude of hLmy;a.
By use of expansions which are valid for all angles
for which AL; > 1, regardless of the magnitude
of ALn;n, the analysis of experimental scattering data
can often be simplified. Also, these approximate
expressions for the scattered intensity often show
general properties of the scattering process which
could not be deduced by examination of tables or
graphs of the calculated scattering for a few par-
ticle shapes.

PLATELETS

By rearrangement of Eq. 2 of Ref. 3, the average
intensity I(h) scattered by a randomly oriented
platelet with thickness »D and maximum cross sec-
tion, diameter D can be expressed

_2 (" ( 1)
I(h) = D J, de |1 — D M(h, x), 1)
where
(,s+Dl)| .
M) = 2 a2 107 — 2,

? A. R. Stokes, Proc. Phgs. Soc. (London) B70, 379 (1957).
+ A. Miller and P. W. Schmidt, J. Math. Phys. 3, 92 (1962).
4 G. Porod, Acta Phys. Austriaca 2, 270, 278 (1948-1949),
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and where 8(r) and A are the characteristic function
and the area of the cross section.

In order to obtain an expression for the scattered
intensity, an approximation for M (h, x) must first
be developed. This approximation is found to depend
on the behavior of 8(r) in the neighborhood of r = 0
and of all points r = a; at which derivatives of 8(r)
are discontinuous. The available information about
the properties of B(r) suggests that most discon-
tinuities in derivatives of B(r) occur at r values
which are called type-I and type-II points.' The a;
corresponding to type-I and type-II points are des-
ignated by @s., and a,;, respectively. Thus, odd
and even indices on the a; refer to type-I and type-11I
points, respectively.

In the neighborhood of a type-I point r=a,,.,, 8(r)
is assumed to be expressible in the form

B(1) = Grina(r) + Koinnr),
B(O) = Gaisi(r),

where all derivatives of the function G,,.,(r) are
continuous at r = @41, and

T2 Gzia1,

T L @isry

© 2 ntasity
K2‘~+1(7') — Z A:1+1[<_T_) — 1] .
n=0 A2ivy
(1+1)/2
Woh, ) = E W, (hx;wz [cos (l ; 1

. {1 1
W)Jun)/z(hx) — sin ( —'2_
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At a type-I1 point r = a,;, B(r) is written
B@r) = Go.(r) + K,.(r),
B(T) = GZ-'(T);

where all derivatives of G,;(r) are continuous at

r = az,', a:nd
) 2 |ntass
Aif[l - (i) ] .
1;1 VSR

The point » = 0, at which all derivatives of 8(r)
ordinarily exist, is called a,. Then for 7 > 0, none
of the a; are zero. The point r = D, which is always
a type-II point, is called a,;. With this notation,
1 ranges from 0 to 27.

Equation (1) requires an expression for M(k, z)
valid for ka; > 1 for ¢ > 1, regardless of whether
hz is large or small. Unless Az >> 1, however, the
usual techniques for asymptotic expansion of Fourier
integrals® are not applicable. A modified approxima-
tion technique is therefore necessary.

As is shown in the Appendix,

7 < Oy

r Z a21’7

K,

M, z) = Wik, 2) + Z M(h, z) + Eh, 7), (2)

i=1

where

#Nasnh) |,

W, = @r/A)a/2}E /12 T2 + D),
800 = d* p/ar

Mh, x) =

n=0

(ha.‘)ai+n+2

N2 dul(1 + 2°/d)]

cos [h(x + a4+ v + "2"}

n
dm(Z) — Z D”“221+a.‘—n,

Dru': =

27!'(12( 1)(1+1)(7+1)221+ﬂ|—ﬂ11(n _|_ 1 +a)I‘(] + 1 +a)A‘
A — PIT@j+a; +1 —n)

= (=1)"amr/2,

and where J;(z) and N,(z) are the Bessel functions
of order [ and of the first and second kinds, respec-
tively. The A} and the a; are obtained from the
series expansions of the K;(r) defined in the discus-
sion of type-I and type-II points.

When (2) is useful, the quantity E(h, z), which
is discussed in the Appendix, is negligible. The
integers N, L, and m are chosen to make E(h, z)
as small as possible, with the restrictions that
N>L+1landm >L — 1.

When (2) is substituted into (1), I(h) can be
approximately expressed by the relation
271
= g I -'(h)a

I(h) 3)

where

“ZZ 80 Y, (wD)

Lt hl+2 b

5 A. Erdélyi, Asymptohc Ezxpansions (Dover Publications,
Ine., New York, 1956), p .

I(h) =
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Yu@ = 250 [(2l+1)
T+ 1)

+ (7‘2;) T(+ D

(=1)'T(+ 3
zlIT(3)

3 xK+}NK+*(x)]
2"K! ’

K=0

Youl® =

—~ TPz~ Jena(@)
% i T |

K=0 2K

X [L(x) — [ at a0 +
o
and where, for 7 > 1,
N-1

E (ha.-)_ (nta Hg)I,.;(h) ,

n=0

2 +D z xz;
Ini=mfo dx(l—v—ﬁ)d,,,-[<1+a—3)]

X cos (h(x + )t + v, + 2")-

Ii(h) =

In (3), the error will not exceed the maximum
value of |E(h, z)| in the interval 0 < 2 < oD.
For 7 > 1, the I;(h) can be expanded in the series

L = ,.E: zi: (hv2a1.)2>'

cos [ha; + v: + 3(n + D]
X : 4
(hai)n+u;+2 ’ ( )
where
_2m £ d [(1 4 £° D*/a3)?]
Y= Fp [0 -0 TR T BT
Equation (4) is convenient to use when the quantity
W D*/2a,

is not large. When only the I = 0 term in the sum
in (4) is appreciable, the I.(k) represent the terms
in the asymptotic expansion of the intensity scattered
by a platelet with negligible thickness. When
h’D?/(2a;) >> 1, the scattering can be calculated
from the asymptotic expansion developed in Ref. 1
-or by asymptotic expansion of the integrals in (4).
Information about this expansion is available from
the author.

RODS

For an elongated rod, » > 1, and, as shown in
Ref. 3, p. 95, for AvD >> 1 the scattered intensity
I(h) can be conveniently expressed

I(h) = w(wD) ' L(h) — 2(wD)™*I,(h) + I.(h),

where

)
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2 P
L0y =4 [ 2z 6@,
7I'
I(h) = I f dz z8(x) cos hz,
Ly = 2 [* a6
V= AwDy J, T
v [cos M + o DY f’” dr sin hr ]
hv D (v3D3+z)} (T2 — xz)

When AvD >> 1, the inner integral in I.(h) can be
evaluated by an asymptotic expansion. Then by
use of the relation

P, = C¥®
and Eq. (13) of the Appendix, I,(k) can be approx-

imated by the expression

“;v'_: 2(n + D(=D)™"'T, (h)

L) = o D

(©6)

n=0

where P,(t) is the Legendre polynomial of order n,
and

_2r [° ( Ji)‘:l
Tn(h) - A ]; z dx ﬁ(x)Pn‘Fl[: 1 + v2D2

X sin [h(:c“‘ + D) 4 ’g]
The T.(h) can be expanded in the convergent series

T.(h) = gT"l(’;v) sin (h p+2H ) @

where

2 1 D 2 3
ra =B [ (14 5

x 21 21

X ’“’”(D) 0+ d+ 27D
If hD/(2v) is so small that only the term for I = 0
is appreciable, then when A is set equal to 0 in
I, (k) and I,(h) in (5), the asymptotic expansion
for a rod with completely negligible cross section
is obtained. Higher approximations can be calcu-
lated by including terms for larger ! values. The
resulting expressions are generalizations of the rela-
tions obtained by Stokes® and by Miller and
Schmidt.?

When haZ/(20D) > 1 for all the a,, the asymp-
totic expansion for a generalized cylinder' can be
used instead of (5), or the T,(h) in (6) can be
approximated by asymptotic expansions.
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Let p be the largest value of any of the |P.(z)]
forn=1,23, - Nandfor1 <z < (1 + ™54
Then

ITaW)| < p (8)
since®
2 [° o @) = 1
4 ©dxBe) =1
Inequality (8) is useful in setting bounds on the
error in (6).

DISCUSSION

Equation (3) gives the intensity scattered by a
platelet whenever AD >> 1, regardless of whether
hvD is large or small. The asymptotic expansions
in Ref. 1, on the other hand, can be used only
when kv*D?/(2a;) >> 1. For small kuD, (3) approaches
the asymptotic expansion of the intensity scattered
by a platelet with a completely negligible thickness.
As heD becomes larger, the thickness can no longer
be considered negligible. For sufficiently large &,
(3) is equivalent to the asymptotic expansion of
Ref. 1.

Similarly, (5) gives the scattered intensity for a
rod for all values of hD when AvD >> 1. When AD
is small, (5) approximates the asymptotic expansion
for the scattering from a rod with negligible cross
section. As hD becomes larger, the effects of the
cross section become appreciable, and for sufficiently
large hD, (5) should give the same results as the
asymptotic expansion of Ref. 1.

In most cases in which (3) and (5) are useful
for analysis of experimental scattering curves, only
a few terms are necessary in each sum. When more
terms are required, another type of approximation
is usually preferable. The higher-order terms in (3)
and (5), however, can be useful in predicting general
properties of the scattering. An advantage of (3)
and (5) in numerical calculations is that methods
are provided for setting limits on the error in these
approximate expressions for the scattered intensity.
Consideration of the error is usually very important
in numerical calculations of the intensity of small-
angle x-ray scattering because of the relatively
complex form of the expression for the intensity.

While (3) in principle gives the scattered intensity
for any platelet, the expression is useful only for
a thin platelet, for which there is a range of h values
for which 2D >> 1 even though hvD is not large.
Such a range of h values occurs only when v < 1.
For larger », the expansion of Ref. 1 is ordinarily
preferable. Similarly, for rods, (5) is useful primarily
when v > 1.

PAUL W. SCHMIDT

If a platelet has a cross section such that the
smallest nonzero r value at which a derivative of
B(r) is discontinuous is a type-II point instead of
a type-I point, the value of a; in (3) can be any
convenient r value such that a, < a,. In this case,
in (), I,(h) is set equal to 0.

When hvD approaches zero, all of the Y,,(hvD)
which appear in I, in (3) approach finite nonzero
limiting values. On the other hand, for small hvD,
the Y, .,(hvD) are proportional to koD ®***, Recent
calculations by Schmidt® and by Kirste and Porod’
suggest that for cross-section boundaries which are
smooth, without corners, 8,,(0) = 0 for I > 0.
If this result holds, then if the cross section has
a smooth boundary, I, in (3) will contain only
Y,(hvD) and the Y,.,. The latter functions are
proportional to AvD*'*? for small hvD. Thus, when
the platelet thickness is small but not negligible,
one can expect that for a given value of WD, I,
can be better approximated by only the [ = 0 term
for a smooth cross-section boundary than for a
boundary with corners.

APPENDIX

The function M (h, z), which is defined in (1),
can be written

M(h; 13) = Mo(h: 2) + Ul(h) 1}) + Uﬁ(ha x): (9)
where

2 2L~2 1+1,(0)
Mo(h: .’D) = X";; E £_'_%l_(())-Ql(hx) g;;) )

=0

o (z2+D2)}

Uik, z) = o , drsin mB[(* — 29,

(z2+as9)

(z74+a6,) %

Uslh, 2) = 2% dr sin S, [67 — 2],

Ah J,

(1+zn)t
Qw o = [ a@ - DYy,
1

2L

.0 = o) - 32O

8@ = d'/da’.

By application of the usual techniques for asymp-
totic expansion of Fourier integrals,® U,(h, z) can
be expressed

Uity ) = Buh, @)+ Bulh, )+ Mih, ), (10)

8 P. W. Schmidt, Proceedings of the Conference on Small
Angle X-Ray Scatlering, Syracuse, New York, June, 1965,
edited by H. Brumberger (Gordon and Breach Science
Publishers, Inc., New York, in press.)

7 R. Kirste and G. Porod, Kolloid Zeits. 184, 1 (1962).
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where E,(h, ) is the error involved in the asymp-
totic expansion of U,(k, z) and

N-1 3 2}
Bih,2) = & 3 LRSS (L)
d G, [("’a - x“)*]!
% ar r-(z‘-u,i)i'

The M (h, z) are defined in (2).
Forl = —1, Q:(h, ) can be written®

Qly,2) = ( ) 2‘/21‘(1 + ) DRI en ()

- Ruly, @ +254, @1

where J.(z) is the Bessel function of order k and
of the first kind, and

2”‘: " (2) cos (yz + nx/2)

le(y; z) = ~ yn+1
+ —;,-{n f dt F™ () sin (yt 4 m ;' 1 w),
PR = @ — D"/

By use of an integral representation of Bessel fune-
tions,® (11) is found to be true forI = 0 and m > 0.
By differentiation, (11) then can be shown to hold
whenever [ 2> 0, provided that m > .

According to Eq. (11), My(h, z) can be written

Mok, 2) = Walh, :v)
2r %2890 s [ ( aa)’]
Trd & o ° Bm{hm Lt |

The W (h, z) are defined in Eq. (2).

The first L. — 1 derivatives of the integrand of
U,(h, ) in (9) will be continuous throughout the
entire interval of integration, since by hypothesis
a; is a type-I point. Therefore, U,(h, z) can be
integrated L times by parts, giving

Uy, x) = Ush, 2)
_ 2x & Z cos [h(z" + a’)* + Ir/2}
im0
4 — ]
X d SL_l (;l xz) ] (z¥+a )t
where
21[' (z34+a:") % dL S N [(,’_2 — $2)}]

X sin (hr -+ ﬁ)

8 W, Magnus and F. Oberhettinger, Formulas and Theorems
Sor the Functions of Mathematical Physics (Chelsea Publishing
Company, New York, 1954), p. 27.

Thus, assuming that N — 1 > L,

MG, x) = Wi, z) + Z M h, 2) + EG, x), (12)
where
E(h, z) = Ey(h, 2) + E,(h, @) + Es(h, 2) + Ei(h, 2)

with E,(H, z) being given by (10) and with
2T32 cos [h(z* + a®)} + nx/2)

E2(h} z) n-L kn+2
« d"Gy[(" — )Y
dr“ ,--(,!4.‘“:)"
_ 2“‘_ 2L~2 6(!)(0)
Es(h‘y x) - —'A g 1
” dﬂ [(rz - x?)il]
X n-ZL ar rulgigg, )}
5 <08 Rz + o)t + mr/'z]
hn+
2L—2 {n
By = U9 - 2 3 520
® m+1 U
X drsm(hr—!—m+1 >d ¢ ,,,Hx)
{zt4a )} dr

The value of k& will be assumed to be large enough
that E(h, z) is negligible. From the form of E(, ),
one can show that

|E(h, )| < BR ',

where B is a constant.

The integers N, L, and m can be chosen to give
the smallest value of E(h, x), subject to the restric~
tionsthat N> L4+ 1landm > L — 1IN =1L,
E,(h, ) = 0. However, E;(h, z) involves derivatives
of (¥ — z*)¥ of order as high as 2L — 2. Some of
these derivatives may be so large that the net error
E(h, ) may be smaller f N > Lthan ¥ N = L,
since if N > L, some of the terms in E,(h, ) and
E,(h, z) may tend to cancel each other. In numerical
calculation, E(h, z) should be examined in detail,
to find the optimum choices of N, L, and M.

The magnitudes of the terms in E;(h, 2) can
often be conveniently estimated by writing r* — 2°
in the form

2 __ .2 _ 2 r @_2-)!]
7 x a,{l -!-2[a1 (1 + p
Ao (142)
X(1+a§")+ a, 1+a¥
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Then®
dn (T2 — xz)z/z

ar®

r=(x?+a,)t

PAUL W. SCHMIDT

where the C,(¢) are the Gegenbauer functions. For
platelets, z < a,, and so

C.12[( + #*/adM = C7*(Q)

2\3
= (—1)"n!ai‘"C;”2[(1 + %) :', (18) forn > I, C;**(1) = 0, while for n < |,
1

% Reference 8, p. 76.

CIY) = (=)D — n)Y .
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In this note, we intend to present an appropriate Hamiltonian formulation for the extension of
the Chakrabarti transformation [A. Chakrabarti, J. Math. Phys. 4, 1215 (1963)] to spin-0 and spin-1
particles. The suggested formulation is derived from that of Duffin-Kemmer and has been used
previously [L. M. Garrido and P. Pascual, Nuovo Cimento 12, 181 (1959); L. M. Garrido and J.
Sesma, Am. J. Phys. 30, 887 (1962); J. Sesma, J. Biel, and L. M. Garrido, Am. J. Phys. 32, 559 (1964)]
to achieve a generalization of the Foldy—Wouthuysen transformation.

INTRODUCTION

The relativistic spin- free-particle equation
Hp = (op + Br)e = 1 9p/d, (1.1

known as the Dirac equation, takes on the canonical
form

ﬂEgDF_w =1 6§0F_w/at (1 2)

when the Foldy-Wouthuysen transformation® is
performed. Instead, Chakrabarti proposes’ another
transformation which brings the explicitly covariant
equation

(yp—ue=20 (1.3)
to the covariant canonical form
'm — Kee = 0. (1.4)

This transformation is general, valid for arbitrary
spin, and is the most appropriate for definition of
relativistic polarization and position operators.”*
However, in the absence of a general Hamiltonian
formulation, Chakrabarti does not show the trans-
_—I_ITE—Foldy and 8. A. Wouthuysen, Phys. Rev. 78, 29
(1950).

1 A Chakrabarti, J. Math. Phys. 4, 1215 (1963).
s A. Chakrabarti, J. Math. Phys. 4, 1223 (1963).

formation in the case of spin 1, and discusses the
expression of particular operators only in the case
of spin-} particles. In this paper we treat the
Chakrabarti transformation by using a general
formulation for particles of spin 0, §, and 1, that
permits a very natural extension of the Foldy—
Wouthuysen transformation to spin-0 and -1 par-
ticles.*®

2. GENERAL FORMULATION

The general relativistic wave equation is®
(ﬁu 9, + K)o = 0, (21)

where the 8, are 5 X 5 and 10 X 10 matrices for
spin 0 and 1, respectively, which obey the Duffin—
Kemmer algebra, while for spin 3, they are 4 X 4
matrices obeying the Dirac algebra. By using the
notation

70=B4Eﬁ;

and the relations

Yr = 'l.ﬂ],, (2.2)

P’ =18" = —d,, P = —idy, (2.3)

( ¢ L. M. Garrido and P. Pascual, Nuovo Cimento 12, 181
1959).
8 L. M. Garrido and J. Sesma, Am. J. Phys. 30, 887 (1962).
§ H. Umezawa, Quontum Field Theory (North-Holland
Publishing Company, Amsterdam, 1956), Chap. V.
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the general equation can be given the explicitly
covariant form

(yp — e =0, 249

as proposed by Chakrabarti.® This equation also
admits a Hamiltonian form which for spin-} particles
is the well-known Dirac equation, and for spin 0
and 1 the equation obtained by Case.” In both
cases we have the same expression,

(ep + Bx)p = E¢,

for the Hamiltonian eigenvalue equation.
The operator that achieves the transformation
of Eq. (1.3) into (1.4) is

2.5)

Q = exp {—iSupi[tanh™ (p/m)]/p}, (2.6)
where m = [p’p.]! is the mass operator, and p
does not represent the 4-vector momentum, but

P = [pp]*: 2.9

The 8,, are the generators of infinitesimal Lorentz
transformations, as defined in Ref. 5. In fact,

S}M = —fa,,, (2.8)
where f is a numerical factor:
f =14, forspin %,

f=1 2.9)

In the case of Duffin-Kemmer particles, the operator
(2.6) can be written as

for spin 0 and 1.

01Q@ =1 — ep/m + (ep)’/m@p’ + m),  (2.10)
and in the Dirac case, (2.6) reduces to
Q=@ + m— )/2m@ + ml, (2.11)

an expression that can easily be brought to the
form proposed by Chakrabarti.

By applying the operator Q, we pass to a new rep-
resentation, which is referred to as the Chakrabarti
representation. In it, the general covariant equation
assumes the form

(2.12)

where ¢ = Q¢ is the wavefunction in the new
representation.

(@'m — K)eq = 0,

3. OPERATORS IN THE CHAKRABARTI
REPRESENTATION

‘We can now give the explicit form of the operators
discussed in Refs. 2 and 3. The expressions that
we present are simultaneously valid for spin-0, -%,

7 K. M. Case, Phys. Rev. 100, 1513 (1955).
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and -1 particles. The single differences is in the
algebra obeyed by the matrices that appear. As we
have mentioned, Dirac algebra must be used in
the case of spin %, and Duffin-Kemmer algebra
for spin-0 and -1 particles.

The infinitesimal operators of the Poincaré group

P=0n (3.1a)
M = xxp + f¢, (3.1b)
N = @&°p — xp") + ife, (3.1¢)

become in the new representation
Do = P, (3.2a)
M, =xxp+féi=M, (3.2b)
Ny = (2"p — xp) + {6 xp)/(@ + m).  (3.20)

A mean spin operator in the usual representation,
=, can be defined as that which becomes ¢ in the
Chakrabarti representation; i.e.,

= =Q7Q
= (p°/m)é + (i/m)axp
— [1/m@" + m))(sp)p.

This operator, valid for spin 0, 1, and 1, commutes
with the Hamiltonian and, as shown in Ref. 2,
becomes the most appropriate for the definition
of a relativistic polarization operator.

It is easy to prove that the Chakrabarti trans-
formation in its general form does not mix opposite
chirality states. In fact, the operator

—(1/4D" 7,0, 73%5,

which enables one to construct the projectors,
1(1 & 4y°) on the positive and negative chirality
states, is invariant under the transformation. [In
the Dirac case, (3.4) reduces to ¥° = —y*y'v*¥°.]

Finally, in a manner analogous to the definition
of mean spin, a mean position operator can be
considered. Its expression and properties for spin %

are discussed in Ref. 3. This operator,

3.3

Y = (3.4

X = Q 'z, (3.5)
has two different expressions:
X° = 2° — i(f/m")ep, (3.6a)
X =x — i(f/me + [f/m@ + m)]
X {éxp — (i/m)(ep)p},  (3.6b)
when @ is expressed in terms of
P’ =19/’ m==x[pp}, (3.7
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and
X' = 2, (3.8a)
X" =x — i(f/m)e + [f/m@" + m)]
X {exp + (G/p")(ep)p},  (3.8b)
if in (2.6) one takes
p’=xE =+’ + &}, m= £« (3.9

The velocities associated with these operators,
(X) = (8p/x), (3.102)
&y = (o/p"), (3.10b)

have the same form in both the Dirac and the
Duffin-Kemmer cases. Their physical properties are,
equally, the same as discussed in Ref. 3.
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APPENDIX

We here give some of the relations used in ob-
taining the preceding expressions.

(a) Dirac Algebra. Besides the more familiar
properties of the o and v matrices, we have made
use of

(ep)e = p + (e xp), (A1)
(6, (ep)] = —2i(axD), (A2)
(ep)(e xp) = {(dp)p — P38}, (A3)

J. SESMA

lo, (ep)] = —2i(éxp), (A4)

(b) Duffin—-Kemmer Algebra. The relations used
are some of those mentioned in Ref. 4 and the
following:

(8, (ep)] = (D), (A5)

8, (eP)’] = 2(8p)*8 — P°B, (A6)

(8, (ap)] = —1fp, (A7)

(6, (ep)’] = @) {1 — 26°}p, (A8)
(ep)8 = —i(BD)F’, (A9)
(ep)(Bp) = +{p* — (BD)’}8, (A10)
(ap)’8 = {p” — (BD)°}8 (A1)
(ep)’@p) = P’(BP)F’, (A12)

B(ep) = i(@p){1 — £}, (A13)
(ep)B(ep) = 0, (Al4)
(ep)(Bp)(ep) = O, (A15)

[, (ep)] = i(p x9), (A16)

le, (op)®] = ¢{(p % d)(ep) + (eP)(P x9)},  (ALD)
(6, (ep)] = —i(exp), (A18)

[3, (eP)’] = —i{(op)(@xp) + (exp)(ep)},  (AL9)
[(@xp), (ep)] = i{p°6 — (ép)p},  (A20)
(ep)e(ep) = (ep)p, (A21)

(ep)(a xp)(ep) = 0, (A22)
(p)o(ep) = (op)’6 — i(op)(@xp),  (A23)
Bep)’ + (ep)’8 = P°8, (A24)
8p)(ep)* + (eP)’(BP) = P*(6P), (A25)
(exp)B = —i(@ xp)F’, (A26)
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1t is demonstrated that in the theory of general relativity integral conservation laws can be obtained
from a vanishing covariant divergence of a tensor in a completely covariant form. This is achieved by
introducing into tensor calculus a new operation, namely, fensor integration which is defined as an
inverse of tensor differentiation. In particular, a one-dimensional absolute integration of a tensor
along a curve is defined as an inverse operation to the same type of differentiation. A representation
of absolute integration is developed by a perturbation method as an infinite series where each term
consists of ordinary integrations only. As an example of absolute integration, a vector field is obtained
whose components can be employed as a coordinate frame having a very close resemblance to the
Riemannian coordinates. Covariant integration is then introduced as an inverse of covariant dif-
ferentiation; however, its usefulness is severely limited by the conditions of integrability which have
to be satisfied to make covariant integration possible. A set of unspecified covariantly constant base
vectors is used to explain the idea of a covariantly constant tensor and to express symbolically absolute
integration in terms of the ordinary integration. The one-dimensional absolute integration is then
extended to higher dimensions in such a way that it is independent of the order of integrations.
Finally, Gauss’ theorem is proved for the absolute integration which enables one to convert a volume
integral of a covariant divergence of a tensor into a corresponding surface integral of the same tensor.
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1. INTRODUCTION

N generally covariant field theories' the require-

ment of general covariance has been successfully
imposed on the local level. Thus, both the field
equations and the vanishing divergence of the
energy-momentum tensor can always be stated in a
covariant language. However, attempts to advance
these theories to the global level presented many
difficulties which could be overcome in some measure
by sacrificing the requirement of general covariance.
In the theory of general relativity, noncovariant
coordinate constraints® are sometimes admitted in
order to be able to integrate the equations of motion.
A better example, and of primary interest in this
work, is the case of global conservation laws. The
vanishing covariant divergence of the energy-
momentum tensor contains other terms besides the
ordinary divergence. They prevent the use of Gauss’
theorem which otherwise would allow to convert the
four-dimensional integral into the three-dimensional
one with the latter yielding the global energy-
momentum conservation law. In order to obtain
such laws, what is done is that the requirement of
general covariance is dropped, and instead conser-
vation laws of generally covariant field theories are
derived from Noether’s theorems.*~® The form of
such laws is

1 P. G. Bergmann, Phys. Rev. 75, 680 (1949).

2 J. Plebanski and J. Ryten, J. Math. Phys. 2, 677 (1961).

3 J. N. Goldberg, Phys. Rev. 89, 263 (1953).

¢ P. G. Bergmann, Phys. Rev. 122, 287 (1958).

8 Gravitation, an Iniroduction to Current Research, L.

Witten, Ed. (John Wiley & Sons, Inc., New York, 1962),
Chap. 5.

3.8 =0,

where 8* is a function of the field variables of a
number of arbitrary functions. In general, S* is not
a tensor under general coordinate transformations.
Whenever it is a tensor it still depends on an arbi-
trary vector field. Barring the case when §* is a
vector, the conserved quantities S* lead to three
distinct difficulties if one attempts either to inter-
pret what S* conserves locally or to formulate global
(integral) conservation laws.

First, if S* is not a tensor then it has no invariant
or rather covariant local or global meaning. Secondly,
if it is a tensor its volume integral over a finite
domain generally is not a tensor so that it has no
global covariant meaning. And, probably the most
serious difficulty is that §* is not unique, but of an
infinite variety.®

It is easy to see that waiving of the general
covariance requirement with regard to the global
conservation laws has not helped either to formulate
them in a unique manner or to make an extensive
use of them (as is done in Lorentz covariant theories).
For some of these reasons it has been claimed’ that
the concepts of energy and momentum are not of
great importance in the general relativity theory.
However, it may be presumed that importance of
these concepts would be regained should it be
possible to construct a global energy—-momentum
tensor unambiguously and covariantly. The primary

¢J. N. Goldberg, Phys. Rev. 111, 315 (1958).

7 P. G. Bergmann, Introduction to the Theory of Relativity

(Prleégice-Hall, Inc., Englewood Cliffs, New Jersey, 1953),
p- .
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objective of this work is to demonstrate how global
covariant conservation laws can be constructed
within the context of the Riemannian geometry.
The main assumption underlying this demonstration
is that all conservation laws have to be manifestly
covariant. Among other things this implies that it
is meaningful to speak of a constant global tensor
only when it is covariantly constant. The last
concept can be easily defined in mathematical terms;
nonetheless, one lacks intuition, pictorial repre-
sentation, and physical content of this idea. Although
an attempt is made to develop both intuition and
pictorial description of this concept, the approach,
in general, is not slanted in that direction.

2. TENSOR INTEGRATION
2.1 Absolute Integration in One Dimension

When one tries to integrate a vanishing covariant
divergence of a tensor other than a vector the
difficulties encountered are not only the additional
terms besides the ordinary divergence. Another
distinct difficulty, even in the absence of such
additional terms, is the fact that integration of a
tensor destroys its tensor character. Therefore,
before one can hope to obtain global or integrated
covariant conservation laws, it is necessary, first
of all, to modify the ordinary integration so as to
make it a tensor operation. The choice of modi-
fication is not as wide as one may think if it is
recalled that integration and differentiation are
inverse operations. Covariant differentiation and
absolute differentiation® are well defined and widely
used tensor operations. However, operations which
are inverse to them are conspicuously absent in
tensor calculus.

Thus in tensor calculus it is customary to pose
the following questions: Given a tensor p defined
along the curve u, is it possible to generate other
tensors from p? The answer, of course, is ‘“yes”,
because by means of absolute differentiation an
infinite number of derived tensors can be readily
gotten. We would like to pose the same question
in the reverse order. Given 7', an absolute derivative
of a tensor p, defined along the curve w, is it possible
to obtain the original tensor p? This question can
be stated in mathematical terms as follows. A tensor
p with N components is related to its absolute deriva-
tive along u, denoted as the tensor T, by

o _E + Alp

™ =T o)

8 J. L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, 1952).
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For convenience all terms in the absolute deriv-
ative of p which are proportional to p are lumped
together. The tensor indices «, - ay may be
either covariant, contravariant, or mixed, but are
denoted by one Latin letter. It is also clear that
the function A stands for a linear expression in
T5,(dz"/du) as is required by the tensor character
of p.

Now, the question posed can be rephrased to
read: does the system of equations in (1) possess
solutions for " when 7™ and A} are known functions
of the parameter u. Whenever such solutions exist
the tensor p is said to be an absolute integral of T
along u and is written as

= f T o+ ph; 22 =0, ()

where p%, is the set of integration ‘constants”
whose absolute derivative is zero.

Absolute integration is then defined as integration
of the system of differential equations in (1). Being
an inverse operation to absolute differentiation it
is by definition a tensor operation.

When the tensor p™ is described by N independent
components, none of which vanish identically, then
Eq. (1) represents N independent, linear, first-
order, inhomogeneous differential equations which,
in general, are also coupled. By successive differ-
entiations and eliminations of all but one tensor
component, this system of equations can be reduced
to a Nth-order, linear, inhomogeneous, differential
equation whose coefficients are A, T, and their
derivatives.

Proofs and conditions under which such equations
possess solutions can be found in any standard book
on differential equations, such as Ince® or Forsyth.'®
Here it is assumed that such solutions exist as they
do for ordinary points of A and 7. In special types
of Riemannian spaces these solutions can be obtained
in a finite number of elementary calculus operations.
Thus Eq. (1) can be integrated when A’s are such
that all equations can be successively decoupled,
or when all A’s are constant, that is independent of u.

If no restrictions are put on the Riemannian
space, Eq. (1) can be solved only when an infinite
number of elementary operations are applied to
the function T and A, assuming, of course, that there
are at least two independent equations. A pertur-
bation solution of Eq. (1) falls in this category.

9K, L. Ince, Ordinary Dzﬁerentml Equaticms (Dover
Publications, Inc., New York, 1956), p.

10 A R. Forsyth Theory of Dzﬁerentwl Equations (Dover
Publications, Inc., New York), Vol. 1-6.
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It may be obtained by introducing an auxiliary
equation

d i n n ” ul

?i% + )\(Ak - A»o)pk + Akopk =T s (3)
where A does not depend on u and A}, are arbitrary
functions of . Here, p" and 7" denote the nth
component of the tensors p and 7. For A = 1,
Eq. (3) reduces exactly to Eq. (1). Now, it is assumed
that p” can be expressed in a power series of A,

P = Z% Aph. 4)
Substituting the power series for p" in Eq. (3)
and considering the latter an identity in A, an
infinite set of equations is obtained:
d; n
po + Ako Do = T )
)

d '!‘1 n n n

Q% + Akop’fx = (Ako — Ak)p,:x—l-

The functions A}, may be chosen so that all equations
in (5) can be integrated. Among such choices are

(a) A, =0, (b) A}, = const,
(e) A%, = triangular matrix, 6)

where in a triangular matrix all elements either
below or above the main diagonal are zero. The
rate at which the perturbation solution in Eq. (4)
converges can be controlled to some extent through
an appropriate selection of AZ,. In a neighborhood
of a point on w, it can be entirely controlled by
choosing constant A}, in (6b) to be equal to A} at
the point.

Absolute integration in Eq. (2) can be represented
in many different ways in terms of an infinite number
of ordinary integrations. One such representation
is obtained with the choice (6a); then

= 2 % =fT"du+c";
™

—pe = f Aipe-y du,

where ¢" are ordinary constants of integration. The
solution in Eq. (7) indeed splits up into two parts.
One of them, proportional to ¢, which in Eq. (2)
was denoted by p{,,, is the solution of the homo-
geneous version of Eq. (1). The other part being the
particular solution of Eq. (1) is linear in the source
term T™ and in Eq. (2) was denoted as the absolute
integral of T™.
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2.2 A Vector Field

As an application of absolute integration one
may attempt to obtain a position vector in a general
Riemannian space. It is well known that the coordi-
nate components z* which define a point in such a
space do not transform as a vector unless the space
is flat. The latter is a trivial case from the point
of view of general relativity and is not considered
here.

The first vector that is closely related to the
coordinate components z* at a given point is the
vector tangent to a curve % which passes through
that point. Thus we may postulate that there exists
a vector X* whose absolute derivative along the
curve  is equal to the tangent vector dz*/du, that is,

8X* dX" dz” dz”
Su = + I‘aﬁ du du (8)

In the notation of the previous section, the solution

of Eq. (8) can be written as
dz" " “* dz*
Ta du + Xo .. T du, 9)
where in the last integral the “constants” of inte-
gration have been absorbed in the integration
limits. From the last expression, it is seen that in
a flat space, where absolute integration becomes
just ordinary integration, the veetor X* is a difference
of two position vectors defined by the two points
u, and u, and is independent of the curve w. In
curved spaces the latter is no longer true, for the
integration in Eq. (9) is explicitly dependent on
the curve u so that, with the two points u, and u,, it
is possible to associate as many vectors X* as the
number of curves can be passed through these two
points. Unless one can single out from among these
a unique vector to go with each pair of points,
the concept of a vector field X* introduced in Eq. (8)
will remain, at best, of questionable value.

Within the class of curves which pass through
two given points there exists a curve of particular
interest and significance. It is the straightest curve
possible in a general Riemannian space, that is a
geodesic. The equations which determine a geodesic
u : 2" = x*(u), are solutions of

X =

X' =

(2) i‘ix_"_=0. g @_"dx'=e
du du du du (10)
for a nonnull geodesic,
8 dz* dz* dz’
®) wde = I Gy

for a null geodesic,
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where ¢ is the indicator.®*' Although the same
symbol u is used for the arc length of a null and a
nonnull geodesic, it should be noted that they are
different. For example, in the space of general
relativity the first is the arc length in a three-
dimensional space,'* whereas the second is the arc
length or separation' in the four-dimensional space;
moreover, it vanishes on the null cone.

If the integration in Eq. (9) is performed along
a geodesic, then X* becomes

o _ , dxh
Xt =u ..
where (dz*/du) Su was written as &[u(dz*/du)] in
view of Eq. (10) and thus could be immediately
integrated.
The interesting properties of the vector field
X* are as follows. It is a two-point function

X“ = X#(ug, ul) = —X"(ul, U2).

Furthermore, it transforms as a vector with regard
to either of the two points u, or u,.

Since the vector X* is defined in terms of a pair
of points in a Riemannian space, it is a propos to
inquire about the type of correspondence that
there exists between such a pair of points and the
vector X*. This is entirely equivalent to the question
of how many distinct geodesics can be passed
through two given points. For a Riemannian space
which is topologically the same as the flat space
or when the two points are limited to a small enough,
although not necessarily infinitesimal, neighborhood,
it is clear that there exists only one distinet geodesic
for any two points.'”® However, it is just as clear
that, in multiply-connected spaces or in closed spaces,
more than one distinct geodesic can be passed
through two given points. In general, the corre-
spondence between the vector X* and a pair of
points will be many-to-one. What is significant,
however, is that the multivaluedness of the vector
X* with regard to a pair of points reflects the space
topology. In this sense the vector X* enables one
either to incorporate the topological aspects of
space implicitly wherever it is used at its face
value, or to deal with them directly if a one-to-one
correspondence is set up between the multivalued-
ness of X* and the space topology.

Affinity of the vector X* to the Riemannian

(11)

1 Relativity Groups and Topology, Les Houches 1968,
C. DeWitt and B. S. DeWitt, Eds. (Gordon and Breach
Science Publishers, Inc.,, New York, 1964). Lectures by
J. L. Synge.

1 1, P. Eisenhart, An Introduction to Differential Geometry
(Pri;l??eton University Press, Princeton, New Jersey, 1947),
p. 173.
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coordinates introduced in Ref. 8 and normal coordi-
nates of Ref. 13 is rather evident. In fact, they are of
the same form and differ only in that the tangent
vector dz*/du in Eq. (11) is evaluated at both
limits in the same way as the arc length u, whereas
in the Riemannian coordinates dz*/du is evaluated
at the origin (u,) and is held fixed at this value at
other points. The vector character of this coordinate
system is limited to just one point, its origin u, where
it coincides with the vector X*.

Other interesting properties of the vector field X*
stem from the assumption that is usually made in
the general theory of relativity, namely, that
physical action propagates along geodesics. Use-
fulness of the vector field X* when one attempts to
integrate the field equations of this theory is strongly
suspected, but this line of thought is not pursued
here.

2.3 Covariant Integration

In absolute differentiation or integration it is
sufficient to specify the considered tensor as a
function of the curve along which the operation is
performed. Often the tensors of interest are either
known or are considered known not only along a
given curve but throughout the entire Riemannian
space. In such cases it is meaningful to speak of a
covariant derivative of a tensor which generates
at a point an infinity of absolute derivatives corre-
sponding to all possible directions of a curve passing
through that point.

Consequently, in analogy to absolute integration,
we define covariant integration as an inverse oper-
ation to that of covariant differentiation, that is,
as a solution to a set of partial differential equations
B = oAt = T

12
oz oz (12)

where T and A are known point functions throughout
the space of interest, and where the tensor p" is
the unknown. Unlike the set of ordinary differential
equations in (1) which always possess solutions
at ordinary points of A and T, the set of partial
differential equations in (12) possess solutions only
under very special conditions. These arise from the
fact that there may or may not exist a required
number of funetions, the integrating factors, which
upon multiplication convert Eq. (12) into a set of
perfect differentials. When a required number of
such integrating factors exists, Eq. (12) is said
to be integrable. Methods of determining inte-

13 1,. P. Eisenhart, Non-Riemannian Geometry (American
Mathematical Society, New York, 1927), Chap. 11,
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grating factors as well as conditions under which
these exist can be found in Vol. 1 of Forsyth.'
The conditions of integrability are

5 Mv;:(._a__a__a_a)pn,

S = 13
ot ox° 8t 8x* 8" (13)

oz’
It is seen that they can be satisfied if the tensor T7,
is a covariant derivative of a tensor Q". Then the
solutions of Eq. (12) can be written down as

p=Q +Q; /i =0, (14)

where @} is a covariantly constant tensor. Con-
versely, if Eq. (12) can be integrated, then the
tensor 77 can be expressed as a covariant derivative
of another tensor. This is a generalization of a
well-known statement in vector analysis that a
vanishing curl of a vector implies that the vector
can be written as a gradient of a scalar.

The operations of absolute and covariant differ-
entiation and absolute integration can be applied
to a given tensor any number of times to generate
other tensors. This is not true of covariant inte-
gration, since it can be applied only to a specia
class of tensors which satisfy the integrability
condition in Eq. (13); moreover, repeated appli-
cations are not automatic but must be inspected
anew for the existence of integrating factors.

Due to these limitations it is evident that covari-
ant integration will not be as useful as the other
three tensor operations.

2.4 Covariantly Constant Base Vectors

The concepts of absolute and covariant differ-
entiation or integration become much clearer and
intuitively acceptable if they are defined in terms
of covariantly constant base vectors.'*™*¢

Thus, suppose that with each point of the Rie-
mannian space we associate a set of independent
base vectors e, which transform as vectors under
general coordinate transformations. The relative
magnitudes and orientations of these vectors are
assumed to be given by the metrie tensor g,,, that is,

(15)

Here the dot indicates a scalar product or projection
of one vector on the other. Next it is required that
the base vectors be covariantly constant, that is,
that they satisfy

(8/6z")e, = (Ge,/0z") — T, = 0. (16)

4 T. J. Willmore, Introduction to Differential Geometry
(Oxford University Press, New York, 1959).

% L. Brand, Vector and Tensor Analysis (John Wiley &
Sons, Inc., New York, 1953), 4th ed., p. 366.

18 Reference 11, Lectures by C. Misner.

€'t = Gur; ¢ = g",.
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The last requirement is a special case of Eq. (12)
with T equal zero. The conditions of integrability
of Eq. (16) reduce to

Runaea = 07 (17)

where R,,,” is the Riemann curvature tensor. In
flat spaces, where the curvature tensor vanishes
identically, these are satisfied so that it is possible
to integrate Eq. (16). However, in unrestricted
Riemannian spaces, (17) cannot be satisfied and
the set of base vectors with the property (16) does
not exist.

Since the base vectors e, cannot, in general,
be determined as point functions over the entire
space they are treated henceforth as unspecified
entities possessing the properties in Eqgs. (15) and
(16). For this reason it was not necessary to intro~
duce more explicit notation for the dot product
in (15).

By means of the base vectors e, each tensor
equation can be converted into an invariant form
if its free indices are contracted with the base
vectors. Thus there is a one-to-one correspondence
between the tensor A*” and the invariant form
A"e.e,. Moreover, due to Eq. (16), the covariant
derivative of A" can be written as an ordinary
partial derivative as follows:

e.6,(8A4Y /827) = (9/327)(A%ee,). (18)

Appearance of the additional terms in a tensor
derivative besides the ordinary derivative can now
be explained as the corrective terms which are
required in order to compensate for the curvature
in the coordinates, that is, variations of the base
vectors from point to point, regardless of whether
this curvature arises from the choice of coordinates
or from the curvature of the space. Equation (18)
shows very lucidly what is meant by a covariantly
constant tensor. First of all, such a tensor can be
converted into an invariant form. The latter can
be thought of to consist of a bundle of arrows
(or vectors) emanating from each point of space
where the tensor is defined. The number of arrows
corresponds to the tensor rank and the magnitude
and direction of each arrow is determined by the
tensor components at the point. In a covariantly
constant tensor, both the magnitudes and directions
of all its arrows remain the same throughout the
region where its covariant derivative vanishes. In
a tensor which is covariantly constant along a
curve u, the magnitudes and directions of all its
arrows remain constant on u as long as its absolute
derivative along u vanishes.
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It is seen that a covariantly constant tensor con-
forms to all our preconceived notions of constancy.

Absolute integration can be expressed very simply
as ordinary integration with the use of the base
vectors. Thus converting Eq. (1) into an invariant
form one obtaing

(@/dw)(P™ " Tea, v e) =TT e, - (19)

where the tensor indices of p and 7 are written
explicitly. Equation (19) can be immediately inte-
grated formally to read

e“Sf Tﬁx"'ﬂh

where the vertical dots imply a k-fold dot product.
However, the integration in Eq. (20) cannot be
performed straightforwardly because e, are not
specified. It is possible to integrate (20) by parts
and, if Eq. (16) is used to eliminate the derivatives
of the base vectors, the procedure can be repeated
indefinitely. This yields the same representation
of absolute integration as was obtained by the
perturbation method in Eq. (7).

*€ayy

€s, * " g du; (20)

2.5 Integration in Higher Dimensions

Absolute integration can be applied more than
once to a given tensor along the same curve. If
the tensor T' is defined on more than one curve,
8ay U5, %2 --- u, multiple integrals of T can be
formulated along various curves such as

ff T bu, du, dus;

Of particular interest is the case when the families of
CUIVES Uy, Uz} Uy, Us, Usz; - - - define a two-dimensional,
three-dimensional, ete. subspaces, such that when
one travels along u; other w remain constant. Then
the integrals in (21) become absolute integrals of
T over a 2-surface, 3-surface, and higher-dimensional
subspaces.

However, absolute integrations along different
paths do not commute just like absolute differ-
entiations. In view of this, it is possible to associate
not one but k! absolute integrals of T over a k-
dimensional subspace. The number k! represents
all the permutations of the order of integrations
among k distinct integrations.

The multiplicity of such integrals and especially
their differences prompts one to ask the following
question. Is it possible to define an absolute integral
of a tensor over a k-dimensional (sub)space which
is both unique and independent of the order of
integrations? The key to the answer lies in the

f T oy Suup; @1)
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last requirement. It can be fulfilled if such an integral
is completely symmetrized with regard to the order
of integrations. Since, among the %! integrals there
exists only one combination which is completely
symmetric, its uniqueness is automatically estab-
lished.

A k-dimensional symmetrized ‘“volume” element
8V, is a direct sum of all permutations of % inte-
grations
8V, =

€1 buy duy e du,;

=

(22)

f**» = 1 if nomne of its indices are repeated
= 0 otherwise. In (22) the sum is implied
- n. Examples of §V, for

i,j, ceem o= 1, ...k’

where ¢
and 7"
over the indices ¢, j -
E =2 3are

oV, = 2(6u, du, -+ du, ouy), 23)
6V3 = %(6’“1 5ug 8’“3 + 8’“] Wa Wz + aU2 6“3 Sul
+ bup Su, Sus + Sus du, du, + Sus Suy du,).

By its construetion 8V, is independent of the order
of integrations since interchanging the kth and the
mth integrations in (22) only rearranges the terms
in the sum.

2.6 Gauss’ Theorem for Absolute Integration

In the preceding sections, absolute integration has
been sufficiently well defined to enable one to
integrate a covariantly vanishing divergence of a
tensor. The latter can be written as

(5/52")5 = 0, (24)

where the free indices on the tensor density 3* are
suppressed for clarity and convenience. In a four-
dimensional space of general relativity, one wishes
to integrate Eq. (24) over a 4-volume V, bounded
by a 3-surface V;. If the 4-volume V, is a part
of a multiple-connected space, the bounding surface
may consist of several disjoint sections such as
two concentric spherical surfaces in a three-dimen-
sional case.

The absolute volume integral of Eq. (24) is

53"

—. oV, 4! (,,k,) ffff(

Ve 523
+ z+ )Bx ox' &x* &',  (25)

where D iz is the sum of all permutations of
0123, and where the coordinates themselves are
taken as the curves along which absolute inte-
gration is performed.
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The right-hand side of Eq. (25) can be divided
into four classes of integrals as follows:

3 v,
v. oz"
41 PP ”ff 3 o ox ox' ot (26a)
+ [l 5 (26b)
+ [[]] £ ot ' 00 00t (260)
+ fff Zg ] (26d)

with D being the sum of all permutations of
1jk not containing n.

It is obvious that only the first integral (26a) can
be integrated once to yield immediately a 3-surface
integral, whereas the others cannot because absolute
integrations do not commute. However, the sum
of all four integrals is invariant when any two or
more integrations are interchanged. Next, it is
shown that the integral (26a) remains invariant
when the order of integration is altered. First of all,
it is obvious that (26a) is unchanged if any of the
ijk indices are relabeled—in fact this is true for
each fixed n in (26a) not only for the sum over .
Also (26a) or any integral with a fixed n in (26a)
can be written in five different ways,

i)

= fff—aﬂfﬂ” ozt 8z oz’ oxt
ox
6 n 3 i n k
= — J" oz’ ox’ ox” ox
ox
6 2 4 7 k n
= = 3" éx' éx’ ox” ox
ox
= ff T &zt oz’ sxt.

Now, suppose that the first and second integrations
are to be interchanged in (26a); then choose that
integral for (26a) in (27), where 62" is either in the
third or fourth place. The interchange would corre-
spond then to relabeling ¢ by j and j by ¢, but this
does not affect the value of the integral (26a).
Similar choices can always be made if not all four
integrations are involved in the reordering.

Using the above invariance of (26a) and the
complete symmetry of (26) with regard to the
order of any two integrations, we switch the first

@7
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and the second integrations in (26), whereupon
(26b) reduces to (26a). Again, switching the first
with the third, and the fourth in succession, (26¢)
and (26d) are reduced to (26a). Consequently,
(25) can be written as

= 3§V,
ve 82" Vs

L >, fff g 8z o’ 8xt.
3! (iik)

The result (28) shows that Gauss’ theorem holds
true also for absolute integration. Although it was
proven only for a four-dimensional space, the
theorem can be readily generalized to an n-dimen-
sional Riemannian space.

From (24) and (28) it follows that

fJ"BV,‘=0——|: ffﬁ&x&x&x
Vs (123)
fffﬁ oz’ oz’ ozt
(230)
fffﬁ ozt o' 8xt
(301)
ff 3* 8z’ oz’ 61;]
{012)

It is of interest to take the absolute time derivative
of (29). If one applies the arguments used in deri-
vation of (28) to the last three integrals in (29),
the time derivative of (29) yields

8 (1 fff 0 s i s k)
P (3! (1223) 3 6z’ ox' ox

ff:s(ax ox* + 82* 6x”) = 0.

(28)

(29)

+

cyclle(123)

(30)

It is seen that the absolute time derivative of
the global tensor [y, 3° 6V, is equal to the absolute
surface integral of 3° over V,, where V, encloses
the spatial volume V. Although the absolute surface
integral is not the same as the ordinary surface
integral, the two have one important point in
common, that is, the evaluation of either of them
requires 3° to be specified only on the surface V,.

Any tensor density 3" satisfying (24) and whose
surface integral vanishes gives rise to a conserved
global tensor p, where

fffﬂ o' oz’ ot 6(,p—O
(123)

Nontrivial tensor densities 3* satisfying Eq. (24)
are known to exist in the theory of general relativity.
They are investigated in Part II of this report.

@D
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Using the idea of tensor integration, the vector field developed in Part I of this report, and the
full Bianchi identities, it is shown that in a general Riemannian space there are four global covar-
iantly-conserved tensors. The ranks of these tensors are three, four, five, and six. The traces of the
first two of these tensors yield the generally covariant equivalent of the familiar linear and angular
momentum. The remaining four traceless tensors describe, residually, the gravitational field. With
each covariantly conserved tensor one can associate a number of independent invariants. Such in-
variants are conserved in the ordinary sense. Among these are two types of rest energies and two
types of angular momentum magnitudes obtained from the trace and traceless tensors. Examples
of global, conserved tensors are derived for a Schwarzschild metric with the electron mass, and a
metric of a point electron. It is shown that the rest energy of the Coulomb field diverges as In(1/r)
at the origin and the second rest energy, that is, the rest energy of the gravitational field diverges as
In r as 7 approaches infinity. When cutoffs are introduced at the Schwarzschild radius r,, at the classical
electron radius r;, and at the radius of the visible universe rs, the rest energy of the gravitational
field contained in the shell of thickness r, — 7 is approximately 100 times that of the electron rest
energy. It is twice this value in the entire visible universe. Since the gravitational field is described
by the traceless tensors and the former forms a heavy, compact cloud around the point particle, it
is conjectured that the traceless tensors represent the internal degrees of freedom of the elementary
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particles,

1. INTRODUCTION

HE objective of this report is to demonstrate,

by an actual construction and a specific appli-
cation, the existence of a finite and unique set of
global, covariantly conserved tensors in a general
Riemannian space. The requisite mathematical tools
for this task have been developed in Part I of this
report and they are readily recognized to be a
key factor in Part II, although no emphasis is
being put on them here.

The local covariant conservation laws, which go
beyond the commonly accepted laws, are formulated
in Sec. 2. They are derived from the full Bianchi
identities and the vector field of Part I in a form
of a fourth-rank tensor and its first three moments,
all of them with an identically vanishing covariant
divergence. The use of a fourth-rank tensor in a
similar capacity is suggested by Trautman,' but
not in a generally covariant context.

In Sec. 3, tensor integration and the Gauss
theorem for such integration is used to convert
the locally conserved tensors into the corresponding
global tensors whose ranks, due to integration, are
lowered by one unit. These global tensors are also
covariantly conserved provided that certain surface
integrals vanish. It is shown that, in spaces where
this provision is satisfied, the algebraic structure
of the four global tensors admits of a decomposition

1 A, Trautman, in Gravitation, An Introduction to Current

Research, L. Witten, Ed. (John Wiley & Sons, Inc., New
York, 1962), Chap. 5, pp. 183-188.

into two trace tensors of ranks one and two and
four traceless tensors of ranks three, four, five,
and six. All of these tensors are separately conserved.
The trace tensors are the linear and angular momenta
of the matter fields. The traceless tensors are the
zeroth, first, second, and third moments of the
fourth-rank energy-momentum tensor of the gravi-
tational field plus the matter field.

In Sec. 5 the third-rank global tensor is obtained
for the Riemannian spaces of the Schwarzschild
metric and the metric of a point electron. This
enables one, for the first time, to calculate in a
manifestly covariant manner the total rest energy
of the gravitational field.

The final section concludes this report with an
interpretation of the traceless tensors, besides the
linear and angular momentum, as the additional
degrees of freedom of a generally covariant dy-
namical system.

2. LOCAL CONSERVATION LAWS
2.1 Bianchi Identities

The field equations of the theory of general
relativity are

R" — 1¢"R = 8xk/c)T*, ®

where R* is the Ricei tensor, R is the scalar curva-
ture, and T*" is the energy-momentum tensor of
the matter. In the absence of matter, that is, when
T* is identically zero, Eq. (1) describes gravitational
radiation. It is then typical of gravitational radiation
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that, if it carries any energy and momentum, a
covariant quantity describing the energy and mo-
mentum of gravitational radiation must assume a
form which is different from the terms of Eq. (1)
(that is it cannot be a second-rank symmetric ten-
sor). This is significant in the fact that, in Lorentz
covariant theories,” the matter tensor 7" describes
completely and adequately the energy and the mo-
mentum state of a dynamical system. In such theo-
ries the symmetric tensor T*” satisfies

(8/82")T*" = 0. 2)

From Eq. (2) and the symmetry of 7" it follows
that

/82 (T"zx" — T*z") = 0. 3

Equations (2) and (3) define ten local conservation
laws which, in Lorentz covariant theories, can be
easily integrated.

In the theory of general relativity one could
proceed to obtain ten conservation laws in exactly
the same way. It is known that Eq. (1) satisfies a
generally covariant equivalent of Eq. (2)

8tk &

T T = 0.
¢ s2*

2 @~ 3¢'R) = @
or

Similarly, it is shown later that, using the symmetry
of T*" and the vector field X* introduced in Part I,
a generally covariant equivalent of Eq. (3) also
holds. From these generally covariant local con-
servation laws, ten global conservation laws can be
obtained in complete analogy to the Lorentz case
by means of the tensor integration developed in
Part 1.

Although the initial objective here, as well as
in many other investigations,®”® was to exhibit the
ten conserved quantities of the Lorentz group in
the theory of general relativity, it is obvious that
having done this the case of the generally covariant
conservation laws cannot be considered closed. There
still remains the question of energy and momentum
transfer by gravitational radiation. If it is assumed
that the energy and momentum of a dynamical
system are solely expressed by and derived from

? L. Landau and E. Lifshitz, The Classical Theory of Fields,
translated from the Russian by M. Hamermesh (Addison-
Wesley Publishing Corporation, Inc., Reading, Massachusetts,
1951), p. 80.

® Ref. 2, pp. 316-323.

4 J. Rayski, “Conservation Laws in General Relativity,”
Bull. Polish Acad. Seci. 9, 33 (1961).

8§ C. Mgller, Tetrad, Fields and Conservation Laws in
General Relativity, in Proc. Intern. School Phys. ‘“Enrico
Fermi,”June-July 1961.
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the tensor T*’, one has to conclude that gravitational
radiation cannot possess energy and momentum.
At present the experimental evidence is inconclusive
and can neither deny nor confirm this assumption.
However, unless there is experimental evidence to
the contrary, one would like to believe that gravi-
tational radiation, just like other types of radiation,
is a carrier of energy and momentum. When this
point of view is adopted, it is clear that there ought
to be another conserved tensor besides 7*’. The
same question put in a more formal way is whether
in the Riemannian geometry there are other tensors
besides R* — 3¢’R with a vanishing covariant
divergence.

In order to look for such tensors, it is best to
discard the tensor 7% which is not an object of
the Riemannian geometry and to consider the
tensor (c¢*/8xk)(R* — 1¢”’R) instead. Its vanishing
divergence expressed by Eq. (4) is a direct con-
sequence of the contracted Bianchi identies. At
this point it is natural to go back to the general
statement of the Bianchi identities and see if they
yield a vanishing divergence of a tensor less re-
stricted than B*" — 1¢"’R.

If the Riemann curvature tensor and the Ricei
tensor are defined as

Ruua = 6#P:P - avr:p + P:,I‘:, - I‘;,F:T,
R,., =R, 9, = 9/ax",

)

then the Bianchi identities take the form
D.R,, + D,R,.,”+ D.R,.,,”) =0; D,=§/5". (6)

It is seen by inspection that, when Eq. (6) is
contracted on 7 and o, one obtains a vanishing
divergence of a linear combination of the Riemann
curvature tensor, namely

Dv(Ru'p’ -

8.k, + 8R,,) = 0. Q)

From the first term in (7) one concludes that this
linear combination should possess all the sym-
metries of the Riemann curvature tensor. When the
index ¢ is lowered, however, the Ricci tensor terms
do not exhibit the required symmetry in the pair
of op indices. This situation can be easily corrected
if one considers two contracted versions of Eq. (7),

D,(R: - %6:R)gup - D,(R; - %5:R)gw =0 (8)
Adding Eqgs. (7) and (8) together one obtains
DvTuvp’ =0, (9)
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where the tensor T',,,” is defined as
Tnvp’ = (_64/87"]9) {pr’ + guﬂR: - 6:Rvp
+ 5:Rup - grpR: + %R(gvpaz - gnpaz)}' (10)

It can be verified directly that the sum of the
Ricci tensor terms in Eq. (10) possess the same
symmetries as the Riemann curvature tensor;
consequently

T + T = 0, (11)
T + T* = 0, (12)
o o 13)
Ty’ + Tops” + To® = O. (14)

The gravitational constant in the definition of
T,,,” in Eq. (10) was introduced in order to make
T,,,” assume the dimensions of energy. One observes
that the contracted T,,," coincides with the Einstein
tensor R,, — %g,,R times the gravitational constant,
and, modulo the field equations in Eq. (1), it is
equal to the energy-momentum tensor of the matter.

Tvvpv =T, = (04/87rk)(R7p - %grpR)- (15)

Thus, the matter tensor is a trace of a higher-rank
tensor T,,,". The former’s vanishing divergence
can be thought of as following from the local conser-
vation law satisfied by 7,,,° as expressed by Eq. (9).
The tensor T,,,’ can be invariantly decomposed
into its traceless and trace tensors just like the
Riemann tensor,’

Tuvp’ = (—64/87"10){0“: + Pv{vgulﬂ

+ Pn[ugrlv + TlfR(grpguv - gupgw)}; (16)
where C,,,” is the Weyl conform tensor, P,, is
the traceless part of the Ricci tensor R,, — %g..R,

and the square brackets around the indices indicate
the antisymmetric part [w] = 3(w — wu). Gravi-
tational radiation is characterized by a vanishing of
all parts in T',,,° except for the Weyl tensor C,,,’°, so
that the latter may be interpreted as the energy-
momentum tensor of the gravitational field (radia-
tion). It is covariantly conserved only when nothing
else but gravitational field is present. When matter
is present then the sum of C,,° and the matter
tensor in the form prescribed by Eq. (16) is co-
variantly conserved together.

Having found a more general conservation law
than that of Eq. (4), it is of interest to ascertain
whether it is unique. Before this is undertaken one

6 J. Ehlers and W. Kundt, Ref. 1, Chap. 2.
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has to state the acceptability criteria for such a con-
servation law. In generally covariant field theories,
it seems reasonable to require that a conserved
quantity be

(1) a covariant quantity,

(2) with a vanishing covariant divergence,

(3) containing quadratic terms in the first deriv-
atives of the field variables.

To these requirements may be added the traditional
one that the conserved quantity should not contain
higher than the first derivatives of the field variables.
For the gravitational field g,, it cannot be reconciled
with the first two requirements which, here, are
considered more important, therefore exemption
from higher derivatives is dropped.’

Moreover, it should be noted that some conserved
quantities, homogeneously linear in higher deriv-
atives of the field variables, have recently been dis-
covered by Lipkin,® but since they do not seem to
be of practical importance’ they are excluded here
by the requirement (3).

Within the Riemannian geometry there is only
one tensor that satisfies requirements (1) and (3),
namely, the Riemann curvature tensor. But the
tensor T,,,°, being a linear combination of the latter
and possessing its symmetries, satisfies (1) and (3)
as a matter of course. In addition it satisfies (2)
in view of the Bianchi identities. Thus the uniqueness
of T,,,” is established.

2.2 Angular and Higher Moments

In Lorentz-covariant theories the symmetry of
the matter tensor and its vanishing divergence led
to a conservation law for the angular momentum
in Eq. (3). This approach can be utilized in generally
covariant theories. A new element that is needed
for this purpose is the position vector. In Riemannian
geometry no such vector exists; however, in Part I
a vector field X* was derived which can be used in
the capacity of a position vector. It is defined by
the differential equation

sX* dX" 8 _ d #
Su + r""’ du X du

amn

7 If another affine connection, e.g., that of a flat space T'g,,
is admitted into the Riemannian geometry, then the tensor
o5, = Iy, — T, offers a possibility to eliminate higher than
the first derivatives. However, attempts have so far failed to
prove the existence or nonexistence of a quadratic expression
in ¢ with a vanishing divergence.

8 D, M. Lipkin, J. Math. Phys. 5, 696 (1964).

9 T. W. B. Kibble, J. Math. Phys. 6, 1022 (1965).
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If the curve u is a geodesic z* = z"(u) determined
by the equations
d’z" . dz® dz’ dz® da’ _
a T T et g du ~ ©
where e = —1, 0, 41 if dz*/du is timelike, null, or
spacelike, then the vector X* is
dz* "

X =u<—i; o

= 0; (18)

(19)

The vector X* depends on two points %, and u, and
a geodesic u that passes through these two points.
If u, is made to coincide with the origin of the
coordinate system and the point %, is allowed to
wander over the entire domain, then with each point
of the domain one can associate a vector X*. Next,
it is necessary to determine the covariant derivative
of X* at any point of the domain if it is to be used
in the role of the position vector.

For this purpose, consider the solution of Eq. (18)
which assumes the form

g = a*(zs, p*, u), (20)

where z§ and p* are constants of integration. More
explicitly, z* can be expanded as a power series'® in u,

xu — xg _I_upﬂ +%A:‘ﬁu2papﬁ

+ o A% + . @D
Here, A" are the I'’s and their derivatives evaluated
at z* = z§. They are obtained by repeated differ-
entiation of Eq. (18). The constants of integration
are sufficient to pass the geodesic curve through
any two desired points. Since one of the points is
to be the origin, 2 must be set equal to zero (z§ = 0).
The other constants p* describe the direction of
the geodesic at the origin, that is

"

- du u-O.

H

Any point may be specified by prescribing either
its coordinates z* or alternatively by stating the
corresponding values of » and p*. Consequently, z*
may be considered as functions of x4, p*, and u [as
is shown in Eq. (20)], but in our case z’ are fixed so
that z* depend only on p* and u.

It follows from Eq. (21) by direct calculation
[and therefore must also be true of Eq. (20)] that

. ©J. L. Bynge and A. Schild, Tensor Calculus (The Univer-
sity of Toronto Press, Toronto, 1952), p. 60.

RIEMANNIAN SPACES. II 1313
B
v 0% =u§£ @iﬂ.=u2£p” (22a)
ap” ou ap” ou
. O ¥
P ooy Y e Dy (22b)
Here p, = 0u/0z"|.-o and, since the right-hand

sides of Eq. (22) are obtained at p* = const, it
follows that
N dz" ou

PPa =72 =

&a-
du Jz*lum=o

In view of Eq. (20) the covariant derivative of X*

may be written as

6xX*

ox”

du X"
ax® ou

op” X"
9z &p”

Each term in Eq. (23) can be evaluated by sub-
stitution of u(dz*/du) for X*, where dz*/du is now
written as 9x*/9u due to the fact that z* is considered
also a function of the integration constants p" as

is indicated in Eq. (20). The covariant derivatives
in Eq. (23) are

(23)

8X*  az* (a’x“ . 0z° ax“)
su  du Tu s T T du du/’ (24)

B » a s
M2 (&)t a2 o

5p ap % ou ap

With the repeated use of Eqs. (22), the last
expression may be converted to

sX*  oz* ap* (a°x*
_ oz p<x+

i p a_x_gw_)
p*  op” * oz \ou® T 50 ou (26)

Due to Eq. (18) the last terms in Egs. (24) and (26)
vanish so that the final result is

+ u’p

8X* _ du 9z
oz 9z~ ou

@7

This result suffices to make the intended use of
the vector X*. In analogy to Eq. (3), the angular
momentum of the energy-momentum tensor 7***°
can be formulated as

DT X" — T""X*) = 0. (28)

It is satisfied, in view of Eqgs. (9), (13), (27), and
the distributive character of the covariant derivative
indicated by the symbol D,. It should be noted
that the trace of Eq. (28) reduces to the generally
covariant equivalent of Eq. (3),

DT¥X* — T"X") = 0. (29)
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The other three symmetries of 7% in Eqs. (11),
(12), and (14) can be utilized to write down similar
expressions to that in Eq. (28); however, they are
nothing more than linear combinations of Eq. (28)
so that they need not be considered.

Since the divergence of 7" in Eq. (9) contains
three free indices, it is possible to formulate higher
moments of 7**” with a vanishing divergence. One
can easily verify that

D, 2 [(T*”"X° — T"*X")X"] = 0,

uyr

(30)

where »,,, stands for a sum of three terms in
which prr are cyclicly permuted. Since the diver-
gence of the parentheses vanishes by Eq. (28),
it is sufficient to show that

Z (Tntvad — T‘rvauXp) — 0

nyr
in order to prove Eq. (30). But the last expression
is zero in view of Eq. (14). Finally the divergence

of the third moment of 7"'*° also vanishes if it is
defined by

Dk Z E [(Tkuvau - TkyvuXp)XrXe]

poe  uvt

=0. (31

Again one needs only prove that
> 3 (@ XT — TTUXO)X = 0.

poeE  urt

Summing this expression first on poe, we get

Z {(Teuvav . Tewap)X‘r + (TpunXe — TpupXV)Xf

+ (T X — T7*X9X"} = 0.

Thus it is zero because terms cancel in pairs due
to Eq. (13). It is not possible to formulate higher
moments of 7**° than the third, because in Eq. (31)
there are no more free indices left in the tensor 7*"*°
for mixing with the index of the vector X*. This is
also true of the tensor 7*" in Eq. (29), consequently
the higher moments conservation laws corresponding
to Egs. (30) and (31) do not exist in the Lorentz-
covariant theories.

3. CONSERVED GLOBAL TENSORS

Any one of the locally conserved quantities in
Egs. (9), (28), (30), or (31) can be converted into
a global tensor if it is integrated over some volume
of the Riemannian space. Such integration requires
in the integrand a factor of the Jacobian of trans-
formation ¢*, where g is the absolute value of the
metric tensor determinant. This factor, being covari-
antly constant (D,g! = 0), can be pulled inside
the divergence to make the tensor in question a
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tensor density. It was shown in Part I that the
integral of the divergenceless tensor density 3 (free
indices suppressed on 3*) can be written as

P) 0 (3' %3: /j/:/‘ 30 6.’1:'. 6:1:" 5:17")
xz L
Vs

+3 2 f 'z’ 82" + &2* 82’) = 0, (32)
cyel.123 Va

where ijk refer to the spatial components. The same
result can be expressed more compactly,

3 0
é& _—
Z ozt 0,

i=1

0
Dy = o+ (33)

where

p* = 1 > ff 3* ox' ox’ 6x*.
3! 123
Va

Equation (32) [or (33)] is the global conservation
law, or rather the global equation of continuity,
which states that the covariant rate at which the
amount of the quantity 3 changes in the spatial
volume V, is equal to the flow of that quantity
through the surface V, bounding the volume V,.

If the flow through some surface is zero for each
component of the tensor, then the amount of the
tensor within the corresponding volume remains
covariantly constant in time.

égo=0; p=p°=—-1— > fff 3° ox' 8z’ ox*. (34)
or 3! &

The above statement implies that associated with
this volume there are n quantities which are con-
served in the ordinary sense. Here n is the number
of independent invariants that can be formed from
the tensor p. Clearly, from Eq. (34), it follows that
(2 (35)
I,(p) being the independent invariants of p.

From now on only those spaces, in which the
surface integrals at the spatial infinity vanish for
the tensors of Eqgs. (9), (28), (30), and (31), are
considered.

In the stipulated spaces there are four covariantly
conserved tensors which exceed the corresponding
tensors of the Lorentz group in rank and number.
Since only the latter are well understood, many
questions relating to the algebraic properties, phys-
ical meaning and importance of the four tensors
remain to be answered. Although no thorough
investigation of them has been undertaken so far,
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it is possible to comment on the more obvious
algebraic structure as well as to make some inferences
about the importance of these conservation laws,

Thus, when matter is completely absent (7 = 0),
the Ricei tensor vanishes in view of the field equa-
tions (1), and the only surviving part in the energy
tensor T*”° is the Weyl tensor C**°. In such a
space filled with the gravitational radiation (field)
only, none of the conserved tensors vanish identi-
cally. Consequently, the residual part of each
conserved tensor pertains to the gravitational field.
When matter is present, it is possible to split the
conserved tensors invariantly into the matter part
consisting of the same type of linear or angular
momentum as in the Lorentz-covariant theory and
the new, higher-rank traceless tensor which consists
of the residual gravitational field plus those con-
tributions of the matter fields which interact with
the gravitational radiation.

This is well examplified by the global tensors
derived from Eqgs. (9) and (28). The first of these,
p**, is a third-rank tensor antisymmetric in »p,

Bep

= §1~' > fjf Vg T 8z 8’ 8a*.

= 123
There are six components in 7%*° without a single
zero index, so that p*"* consists of 14 components.
It can be split into its traceless and trace parts
as follows:

P77 = ¢ + g — ¢7P), 37

where p* = g,,0"* is the linear energy-momentum
vector of the matter fields. From the definition of
¢ in Eq. (37), it follows that ¢** is a sum of two
terms

(36)

qmp = " + m*. (38)

Here ¢"” is the integral of the conformal tensor
density g*C®*"*. Tt represents the gravitational field
contribution to the energy and momentum of the
system. m** is the integral of the tensor density
entirely defined by the Ricei tensor so that it
represents the contribution of the matter fields to
the traceless energy—momentum tensor ¢***. The
decomposition of p*" into two mutually orthogonal
tensors in Eq. (37) (that is, a 10 component tensor
¢*”’ and a four-component vector p°) is invariant
with regard to the general coordinate transfor-
mations, A number of significant consequences can

be drawn from this invariance. First, the tensors
Fid

¢"”* and p° are conserved separately,
3 8w
Qp’ = (}; D KP == (., (39)
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Secondly, the magnitude of p*, p = (]p’p,{)*, and
the magnitude of ¢**, ¢ = (g""*q..,])}, being two
independent invariants of p*”*, are both constants
of the motion

3

J

az’
In analogy to p, which is the rest energy (or rest
mass) of the dynamical system consisting of the
matter fields, ¢ can be interpreted as the rest energy
of the gravitational field and those parts of the
matter fields which interact with it. Thus, in gen-
erally covariant theories, each dynamical system, 18
characterized not by one but by two rest masses.

Thirdly, there can be no exchange of the linear
energy-momentum (p°) between the gravitational
field and any of the matter fields due to the fact
that the energy and momentum of the gravitational
field is always expressed by the traceless tensor ¢*™*.
Exchange of energy and momentum between the
matter fields and the gravitational field is allowed
by means of the tensors ¢ and m"™”*, for neither
of them is individually conserved although their
sum is,

The latter part of the third conclusion has been
known in various forms,"’ namely, that the lowest
observable interaction mode between the gravi-
tational radiation and a test particle is through
quadrupole oscillations.

The global tensor derived from Eq. (28) expressing
the conservation of angular momentum is a fourth-
rank tensor

TYpO 1 vpo g
v =g gl viarx
Vs

— T X" 6 8z’ axt. (41)

It is antisymmetric with regard to the transposition
of the first and the second pair of indices,

rypc pary

P = —p (42)
The maximum number of independent components
in p™"*¢ cannot exceed the product of the components
of T°%° and X" or 14 X 4 = 56. Among these
components, however, nine are identically zero,

1010 __ 1020 _
P =P =P
2121

14 =D
and five differ only by a sign,

1630

=P

8131

. p — p3232 — 0’

2020 __ 2080 __ 0
- —

3030

2120 2021

? = —p i = —-p

3231 3132

¥4 =—-p , P
u B, DeWitt, in Ref, 1, p. 340.

2312 3130 3031

= —p .

3032

1232
¥

3230

—-p
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Consequently, p™*” consists of 42 independent com-
ponents. When it is contracted on ve, a generally
covariant equivalent of the angular momentum
in the Lorentz theory is obtained.

TYPT

2" = g.p
= g— > [[[ ¢arx - 1% o0 b 0. 43)

TVp T

Thus the trace of the tensor p is the angular

momentum of the matter fields. The other trace
of p*% ¢.,p7*°, consists of p’” and another part

dependent on the Weyl conform tensor C,

g0 = —=p” + (). (44)

In analogy to the previously considered tensor,
P’ can also be decomposed into its traceless and
trace parts

TYPO

p fvpd + gva’ fp (45)

where ¢ is the traceless tensor with regard to
the index pair ve. Again, the tensor ¢””*° is a sum
of two different terms, the residual term that is the
integral of the conform tensor density g*(C**"X" —
C°°"X*) which may be interpreted as the angular
momentum of the gravitational field, and the matter
term—the integral, whose density consists only of
the Ricci tensor,

q c‘rvpcr_*_ m‘rvpu. (46)
From Eq. (45) it follows that the six-component

Tvpa

TVpo

TYpe __

tensor p™ and the 36-component tensor ¢ are
conserved separately
B T TVpo
WP =0 el =0 @

Their magnitudes, being two independent invariants
of p™*’, are constants of the motion

5% (Ip"p-o)* = 0; a—i-“ (""" qrml)* = 0. (48)
Conclusions drawn about the energy and momentum
tensor p*”* are equally valid for the angular mo-
mentum tensor p”"*° when appropriate terms re-
ferring to momentum are substituted with terms
that refer to angular momentum.

In a generally covariant dynamical system, the
angular momentum of the matter fields is described
by the familiar six-component, antisymmetric,
covariantly conserved tensor p™. The angular mo-
mentum of the gravitational field and of the matter
fields which interact with the former is described
by a new traceless, fourth-rank, covariantly con-

served tensor ¢""*°.

BOHDAN SHEPELAVEY

There can be no exchange of the angular mo-
mentum p’* between the gravitational field and the
matter fields due to the traceless character of ¢™"*°.
The exchange of the angular momentum between
the gravitational radiation and the matter fields
is allowed by means of the tensors ¢”**” and m
since neither of them is conserved.

Therefore, with a generally covariant dynamical
system, one assoctates not only two rest energies or
masses but also two types of angular momentum.
Magnitudes of these momenta are two independent
constants of the system. The remaining two con-
served tensors derived from Egs. (30) and (31)
obviously cannot be decomposed into the traceless
tensors and the lower-rank trace tensors of the
Lorentz group. In the Lorentz-covariant theories,
there are no known conserved tensors expressing
either the second or the third moments of the energy
and momentum to fulfill the role of traces. It is
concluded, then, that both these tensors are of the
same character as the previously discussed ¢ tensors,
that is they govern the exchange of the second and
the third energy-momentum moments between the
gravitational field and the matter fields. This is
also borne out by the fact that traces of rank one
and two of these tensors do not reduce to any tensors
of the Lorentz group but vanish identically.

The second moment tensor of Eq. (30) is of the
fifth rank. It will be written as

o) f [ ¢ = amx

myr

fvpn'

rvupv —

— T"*X") X" o' 6x' 82",  (49)

where, it is recalled, )_,,. stands for a sum of three
terms in which pvr are cyclicly permuted. Using
the symmetry arguments below one can show that

Gurlosd ™" =0 (50)

so that ¢ is indeed traceless. A number of

symmetries of ¢"™*” follow directly from its definition
in Eq. (49).

Tappy BoVET vaTpp

= q ,

HpTIV

G2y

q —q —q (52)
They can be easily checked by writing out the sum
> explicitly.

The number of independent components of ¢
cannot exceed the product of the components of
T°” and X°X" or 14 X 10 = 140. However, in
view of the above symmetries, many components
may be linearly related or may vanish identically.

q =4q

TOupY TRYVTU
= .

Tappy
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The last conserved tensor describing the third
moment of the energy and momentum is a six-
rank tensor ¢"***”*, where

TOUpYE 1 2PV o
g =5§fffg*ZE(T°”X
Va

ey

— T"*X)X"X* ox° oz’ ox*. (53)
In view of the sums Z,,,,, and Zp,, in the definition
of ¢"*"*, it is obvious that ¢"™*’° does not change
when either prr or pre are cyclicly permuted as
in Eq. (51). When the sums are written out explicitly,
one recognizes by inspection the following sym-
metries: ¢""™***° is completely antisymmetric in the
three indices wrr and completely symmetric in the
remaining three indices poe. Obviously, all traces of
the antisymmetric index pairs wp, pp, vp vanish,
The symmetric index triple poe generates 20 distinct
components and the antisymmetric one only four,
consequently, the number of independent com-
ponents of ¢"™"* should not exceed the product
of these, that is 80 components.

4. SUMMARY

In generally covariant theories, a dynamical sys-
tem is characterized by four global tensors which
express conservation of the system’s energy and mo-
mentum, and their first three moments. The first two
tensors are reducible into traceless and trace tensors.
The latter constitute the generally covariant equiv-
alents of the conserved tensors of the Lorentz theory;
however, contrary to common expectations, they
say nothing about the energy or momentum of the
gravitational field but describe exclusively the
matter fields. The gravitational field energy and
momentum as well as its first three moments are
contained in the four traceless tensors of the third,
fourth, fifth, and sixth rank, respectively. The same
tensors contain also the contribution from the matter
fields via the Ricci tensor terms. Each traceless
tensor is covariantly conserved, but the gravitational
field and the matter field parts in it are not conserved
separately. This fact allows for interaction of the
gravitational field and matter fields with an exchange
of energy and momentum or any of its first three
moments between them.

Conservation of the second and third moments
of the energy and momentum arise in consequence
of the high rank of the energy-momentum tensor.
The latter is required by the nature of the gravi-
tational field in the general relativity theory. One
can easily see by considering quadrupole or higher-
order multipole radiation that momentum trans-

RIEMANNIAN SPACES. II 1317
ferred to a test particle by such radiation is not
confined to one direction, as is the case with the
linear momentum, but is distributed in different
directions simultaneously. Such distribution can
be described only by a tensor of higher rank. More-
over, the net linear momentum in any one direction
imparted by the quadrupole or higher-order multi-
pole radiation to the test particle is zero. This
explains the traceless character of the four ¢ tensors.

S. EXAMPLES OF GLOBAL CONSERVED TENSORS

Implications and usefulness of the global conserved
tensors are easily shown by obtaining examples of
some of these tensors in specific Riemannian spaces.
This also serves other purposes. First, the method
of tensor integration is demonstrated. Secondly,
it is possible to show that some of the assumptions
made, such as the one about vanishing of certain
surface integrals at the spatial infinity, do not
lead to a trivial class of conserved tensors. Finally,
the numerical results have an important bearing
on the physical interpretation of spaces under
consideration. Also, they may shed some light not
only on the relative magnitudes of the matter
tensors and the ¢ tensors, but, hopefully, indicate
their relative importance in general.

Two considered spaces are that of a neutral mass
m or the Schwarzschild metric and that of a mass
m with an electric charge e. The metric and the
curvature tensor need be specified only for the latter
since they become identical to those of the neutral
space when the charge is set equal to zero (e = 0).
This metric and the corresponding nonzero I's

a‘rel2—14

w1 To 4 Ty 2
G, dz” dx” = (1 " -+ 2 )(c di)
ar
1 — (ro/r) + (rori/r)

o, = I = %goo 91900}

+

+ 1*(d%0 + sin® 0 &%),

1
T =

_%gu 91000}

Iy, = %g“ 91611, I, = sin™? eréa = Tfoo; (54)
=T =T, =15 = 1/r,
I'is = —sin 6 cos §; T'3; = I'y; = cot 4.

Here ct, r, 6, ¢ are the coordinates. The two constants

2 P. G. Bergmann, Introduction to the Theory of Relativity
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1953).

8 R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Clarendon Press, Oxford, England, 1934).

¥ H. Weyl, Space-Time-Matter (Dover Publications, Ine,
New York, 1950).
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7o and r, are the Schwarzschild radius and the
charge radius, respectively.

re = 2km/c*; (55)

where k is the Newtonian gravitational constant
which already appeared in Eq. (1). The six non-
vanishing components of the curvature tensor are

-1
Rono = <t% - Zir—’f—‘)(l - 1';'(,)‘ + 7“011> H

7 7 r

_l(r_q_?_roﬁ>
2 \r /]’

r, = e/2mc,

[ 1
Rozz = R122 =

(56)
1(r 2rgry\ .
Ry’ = ) <;Q - %) sin® § = Riss';
Re® = (2 = T0) sin? 6.
The nonvanishing components of 7% containing
at least one zero index are
T w_—_c‘i(zg_m) :
01 - 3 4 y
8k \r T 57)
—c 7 7ol
T0220 = Tos30 = 8‘% <“§‘:§ -+ ::)
All components of the form 7, ¢ > 0 vanish

identically so that the surface integrals of Eq. (32)
are zero for all four tensor densities and for any
arbitrary choice of the spatial surface V..

In view of Eq. (57) the energy—-momentum tensor
p""* consists only of three components p‘so, ¢ = 1,2, 3
which are given by

p".‘o = é‘fff 'r2 Sin 0T0‘¢0{5T(50 6@0 + 5(p 50)

+ 86(8r 8o + 80 1) + dp(or 86 + 60 or)}.

If any one of the six integrals in Eq. (58) is
denoted by p:* then it can be shown that

(D"D,' - D,‘D,’)p;.o = (D,‘D,‘ - DiD,')ka:,ao = 0,
i,5,k,s=1,2,83 i#j#k, n=1,---,6, (59

(58)

so that all tensor integrations or, 66, é¢ commute
in this space. Consequently, p’:, are

P = fff r* sin 0T, or 80 dp

— 4r f AT 5. (60)
In ihe last integral the integrations over ¢ and 6
have been performed over the entire space. The
result is 4w, sinece they happen to coincide with the
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ordinary integration. The r integration does not,
but it can be performed by taking the covariant
derivative of Eq. (60) with regard to r and solving
the resulting differential equation for p‘:. This
vields

p".-o = 47"(_900)* f 72(_900)—&’1’0"1’0 dr;
(61)

o4
2

r r

—goo =1 —

Substituting the expressions for T°';, from Eq.
(57), the three components are

Pllo = —mc2(—goo)*(F1 - Fz);

(62)
pzzo = paao = —mc2(—goo)’(—%F1 + F).
The functions F; are two integrals
1
Fi=ln l::,:“ (—goo)* + 1”1 - le + ¢,
[} [4] (63)

b () [ g 20

To r

-5 @) e,

where ¢; and ¢, are the constants of integration
which can be identified with the lower limit of
the integral in Eq. (61) if it is definite. The trace
of p*;o and its traceless tensor are

3
Do = Zp‘io = "'mcz(—goo)*Fzy

i=1
g0 = —mc(—gon) (Fy, — $F2);

qzzo = 9330 = —mc2(—goo)%(—%pl + %Fz)-
The magnitudes or rest energies of p, and ¢, are
g = mc |, — ®F].  (65)

In the Riemannian space of the Schwarzschild
metric r, is zero so that F, vanishes. But the rest
energy of the gravitational field contained in the
spherical shell of thickness r — r;, does not vanish,
and according to Eq. (65) is equal to

r(L—ro/mt 41~ 310
ri(l — 7”0/"'1,); + r, — 37

Here ¢, in F, is chosen so as to coincide with the
lower limit 7, of the integral in Eq. (61). The
lowest value that r,, can assume is the Schwarzschild
radius r,. The upper limit » may be made to approach
infinity, in which case the rest energy of the gravi-
tational field diverges logarithmically. In order to
obtain a finite result, it is necessary either to intro-

(64)

p = mc’ [Fy;

dsen = mcz(%)* In (66)
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duce a cutoff or to inquire about the energy contained
in shells of finite thickness.

First, the energy between 7, and r, is calculated,
where it is assumed that r, in Eq. (55) is produced
by the smallest known mass m, that is, the mass of
the electron and r, is of the order of nuclear size,
or more accurately, the classical electron radius
of Eq. (55) with e, m being the electron charge and
mass. For this case, one obtains approximately

Zsenlro, 1) = 119me”. (67)

The energy of the gravitational field within the
volume of the size of a nuclear particle is two
orders of magnitude greater than the rest energy of
the particle which produces the field.

In the second calculation, let the upper Iimit r
be extended up to the radius of the visible universe,
that is, r = r, = 10°® em. In fact, it may be argued
that this is the maximum that the upper limit
should assume, since the regions beyond this point
are not causally connected with the field-producing
particle. The rest energy of the gravitational field
within the volume of the size of the visible universe
is only about twice of the value in Eq. (67), that is,

@sen(ro, T2) = 234mc’. (63)

One concludes from this that the gravitational field
energy is concentrated in the immediate neighbor-
hood of the Schwarzschild radius r,.

In the Riemannian space of the charged particle
with the metric in Eq. (54) the field is characterized
by two rest energies, that of the matter field which
in this case is the Coulomb field and that of the
gravitational field and matter field. The rest energy
of the Coulomb field contained in a spherical shell
of thickness r, — r is

3
— w2
p—mc(rl))

(11 )y ot 1 (o)

r 7 r 2 \r, .

3 3 3

_To T oy _1(2'_0)
(1 T rﬁ) +(r..> 2 \r,

The upper limit r, can be extended to infinity with
no ill consequences. However, the lower limit r,
on approaching zero, yields a divergent result. This
is not surprising since the Coulomb self-energy is
known to diverge as 1/r. What is new here is that
the general covariance removes one degree of
divergence so that the Coulomb energy p in Eq. (69)
diverges only logarithmically.

To get a finite result for p a cutoff has to be

X In

(69)
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introduced. Since the classical electron radius r, is
indicative of the size of charge distribution, the
lower limit may be chosen to be on the order of ry,

say r,/n, where n is close to unity, With r, = o
one obtains

Ed
27'1% 1+(n—%)(%) 2
p=mc(a)ln 17\ = nmc. (70)
i )
1_2(7'1)

In the calculation of the second rest energy ¢ it
is necessary to introduce also the upper cutoff
ry = rz. With these limits on the integral in Eq. (61)
g becomes

q(% , r2> = (105.75 + 1.67n + 1.22 lnn)me®. (71)

In the above calculation the cutoffs were imposed
on both integrals F, and F, of Eq. (64), however,
each function F requires only one cutoff. If the
function F, were to be calculated with the upper
cutoff only, then ¢ in Eq. (71) should be augmented
by

q(O, %) = 60mc”. (72)
The removal of the upper cutoff on F, changes its
value only infinitesimally since F, converges at
r— o,

Although the Riemannian space of the charged
particle is considerably different from the space
of a neutral particle, e.g., the charge removes the
Schwarzschild interior region of r < ry, the quali-
tative features of both these spaces are the same.
First, there is the field-producing particle repre-
sented by a singularity in the interior of the
Schwarzschild radius or in the interior of the charge
distribution. The latter is assumed to be a point
charge due to the lack of a more satisfactory theo-
retical or experimental charge model. In view of
its singular nature, this particle is not governed
by the field equations. The singular particle is
surrounded by two types of fields, the matter field—
provided the particle carries a matter “charge”’—
and the gravitational field. The rest energy of
the matter field is on the order of the rest energy
of the singularity, whereas the rest energy of the
gravitational field is two orders of magnitude
greater than either of the other two. The “heavy”
gravitational cloud surrounding the particle is mostly
contained in a volume of the size of a nuclear
particle,
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6. INTERPRETATION

Appearance of the ¢ tensors on the scene raises
some questions in regard to their importance relative
to the trace tensors, delineation of domains in which
they are of primary significance, and their physical
meaning,

Answers to some of these questions are interrelated
and have to be discussed jointly to a degree.

It is shown in Seec. 3 that the class of four con-
served tensors divides into two subclasses, one
containing tensors of the Lorentz theory, and the
other consisting of high rank, traceless ¢ tensors.
Since tensors in each subclass are conserved sepa-
rately any measurement or knowledge of a tensor
in one subclass does not extend to, or say anything
about, a similar tensor in the other subeclass. Thus
the ¢ tensors can be interpreted as those degrees
of freedom which are necessary to specify a generally
covariant dynamical system in addition to the
familiar linear and angular momentum.

Although it is not possible to aseribe different
levels of importance to various degrees of freedom,
the ¢ tensors do seem to be more fundamental in
the following sense. In a Riemannian space none
of the ¢ tensors need be zero when all matter fields
vanish, At the same time none of the ¢ tensors can
be made to vanish in the presence of any nonzero
matter field without violating the field equations.

Usefulness of the ¢ tensors in those theories,
where the gravitational field has to be dealt with
explicitly, is rather evident and need not be elabo-
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rated on here. What is most interesting, and at
the same time least certain, is the speculation that
the ¢ tensors are the internal degrees of freedom of
the elementary particles. This is strongly suggested
by the picture of the particle which emerged from
the specific examples of the conserved tensors con-
sidered in the previous section. Thus, can the second
rest energy ¢ account for heaviness of some ele-
mentary particles and is its conservation synony-
mous with the conservation of heavy particles?
Is there any connection between the higher moments
g tensors and the various particle spins? However,
any such specific identifications are premature at
this time. The conjecture that there is a connection
between the ¢ tensors and the internal degrees of
freedom of the elementary particles can be proved
or disproved only after these tensors are exhaustively
studied and analyzed for their formal structure
and symmetries, after they are applied to more
realistic Riemannian spaces where cutoffs need not be
introduced, and after one develops a set of observ-
ables of these tensors. The correspondence, or a
lack thereof, between the ¢ tensors and the internal
degrees of freedom of the particles will then be
easily recognized.
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The concepts of news function and mass aspect are generalized to a class of cylindrically symmetric
metrics containing both degrees of freedom of the gravitational field. It is proved that the mass/unit
length always decreases if there is any cylindrical news. The asymptotic behavior of the Riemann
tensor in the cylindrical case is analyzed and a peeling theorem proved for this case. An example is
given to show that asymptotic conditions on the metric or the Riemann tensor which are analogous
to the conditions used in the asymptotically spherical case do not exclude certain infinite incoming
radiation trains in the cylindrical case. Pure incoming and outgoing solutions are defined for the
cylindrical case, and their generalization to the asymptotically spherical case is suggested. An exactly
conserved quantity is shown to exist which may be the cylindrical analog of the ten exactly conserved
quantities recently discovered by Newman and Penrose.

I. INTRODUCTION

T is well known that, according to the general

theory of relativity, the gravitational field is
capable of supporting radiation with two degrees
of freedom." In recent years a great deal of progress
has been made in the analysis of the asymptotic
gravitational radiation field of bounded sources by
carrying out the analysis on null hypersurfaces.”
Yet, so far no exact solution has been found rep-
resenting the exterior field around a bounded
radiating source, much less a solution representing
the source itself together with its radiation field.?
In the absence of such solutions, the linearized theory
has been used recently to investigate the relation
between the asymptotic field and its sources; and
a definition of the multipole structure of sources
in the exact theory has been proposed on the basis
of this analysis.*

Although the study of bounded sources and their
fields is undoubtedly the best model for realistic
physical situations (where one might hope that
gravitational radiation plays some role), there is
much to be said for the study of any exact solutions
available which allow some aspects of the problem

* This research was partially supported by the National
Science Foundation while the author was at the University of
Pittsburgh; and by the Aerospace Research Laboratories of
the Office of Aerospace Research, United States Air Force,
during a visit to Temple University.

1 See, for example, R. K. Sachs, Relativity, Groups and
Topology, C. DeWitt and B. DeWitt, Eds. (Gordon and
Breach, Science Publishers, Inc. New York, 1964), p. 523.

2 H. Bondi, M. van der Burg, and A. Metzner, Proc. Roy.
Soc. (London) A269, 21 (1962); R. K. Sachs, 7bid. (London)
A270, 103 (1962); E. T. Newman and R. Penrose, J. Math.
Phys. 3, 566 (1962).

8 A solution representing asymdpto’cically spherical waves
has been given by I. Robinson and A. Trautman, Proc. Roy.
Soc. (London) A265, 463 (1962), but it does not represent
radiation from a bounded source.

¢ A. Janis and E. T. Newman, J. Math. Phys. 6, 902 (1965).

to be studied, even if they are physically unrealistic.
They can serve to demonstrate how well the new
methods accomplish their aims in a simplified model.
And, more importantly, they can serve as starting
points for the approach to problems too complex
to be solved in the more realistic but mathematically
more intractable cases.

Cylindrical gravitational waves offer such a model
where both degrees of freedom of the gravitational
field may be studied in a relatively simple mathe-
matical context with the hope of relating them
exactly to their sources. This paper applies some
of the recently developed methods of analysis to
this case. Section II summarizes the nature of the
class of cylindrical radiation metrics now known,
and gives a new solution to field equations of this
type. In See. III a news function is defined for the
cylindrical case, and the subclass of solutions for
which this news function exists is discussed. Sec-
tion IV discusses the asymptotic structure of the
Riemann tensor in the cylindrical case. Section V
is a summary, with indications of further problems
remaining to be solved.

II. CYLINDRICAL GRAVITATIONAL WAVES

A class of time-dependent cylindrically symmetrie
solutions to the KEinstein field equations seems to
have been first discovered by Beck,’ who found them
by making the complex transformation z — ¢, ¢ — iz
on the Weyl-Levi-Civita class of axially symmetric
static metrics. They were rediscovered ten years
later by Einstein and Rosen® in an explicit search
for time-dependent cylindrically symmetric solutions
to the field equations. This class of metrics contains

5 G, Beck, Z. Physik 33, 713 (1925).

¢ A. Einstein and N. Rosen, J. Franklin Inst. 223, 43
(1937).
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only one degree of freedom of the radiation field.
The second degree of freedom was implicitly ex-
cluded by Einstein and Rosen’s demand for reflection
symmetry of their metric with respect to the trans-
formation 2 — —z. A class of solutions containing
the second degree of freedom was discovered by
Ehlers,” using a method similar to Beck’s. He dis-
covered a generalization of the Weyl-Levi-Civita
metrics and performed a complex transformation
on them. Kompaneets® independently discovered
this class by a generalization of the Einstein—Rosen
method, dropping the demand for reflection
symmetry.

The metric, in the form given by Jordan and
Ehlers, is

ds* = &V — dp®) — &Y dF

— 26" dedgp — (¢ + P de’, (2.1)

where ¥(p, t) and x(p, t), representing the two
degrees of freedom of the gravitational field, are
determined by the two coupled nonlinear partial
differential equations

A/p)(o¥.0).s — ¥oue = 172606 (¢, — X0,

(I/P)(px.p).p — Xt = (2/P)X.p + 4(x,i¢,t - X.p‘l/.ﬂ)'
2.3

(2.2)

The function v(p, t) is determined by the equations
Yo = p("’?p + \02t) + (1/49)6”()(2.1 + X?p)v
v = 20¥.,0. + /200" x.x..,

once ¥ and x are given. If x equals zero, the metric
reduces to the Einstein-Rosen metric, which has
only one degree of freedom ¢ determined by Eq.
(2.2), which then reduces to the scalar cylindrical
wave equation. This case has been extensively dis-
cussed by Rosen,” Weber and Wheeler,’® Marder,"
and Thorne.”” It has been shown that the static
solution ¥ = a In p + b represents the field exterior
to a massive infinite cylinder.'" The values a
0 and @ 1 correspond to flat space—time; but
a = 1 corresponds to an interchange of the roles
of z and ¢. So it is more convenient to use the
value a 0 for flat space with this labeling of

2.4

7 First reported by P. Jordan, “Research on the Theory
of Relativity,” U. 8. Air Force Tech. Note A. R. L. WCIJ
TN 88-1.

8 A. Kompaneets, Soviet Phys.—JETP 34, 659 (1958).

» N. Rosen, Bull. Res. Council Israel 3, 328 (1954).

10 J. Weber and J. Wheeler, Rev. Mod. Phys. 29, 509
(1957).

11§, Marder, Proc. Roy. Soc. (London) A244, 524 (1958).

12 K, Thorne, Phys. Rev. 138, B251 (1965).
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coordinates. Outgoing and incoming radiation solu-
tions representing finite pulses of radiation and
infinite wave trains have been constructed,” and
the outgoing solutions shown to carry off energy
and momentum as measured by the Einstein pseudo-
tensor calculated in a suitable way.'® A linear equa-
tion governs y, so any arbitrary combination of
incoming and outgoing solutions may be super-
posed.

Since the case of one degree of freedom, the
Einstein—Rosen case, leads to a simple wave equation
for ¢, one is led to investigate the possibilities of
simple results for the other degree of freedom. How-
ever, if we try to solve the coupled set of Eq. (2.2)
and (2.3) with ¢ = 0, we easily see that no solution
is possible except x = const., which can be eliminated
by the coordinate transformation 2’ = z 4+ ¢¢. The
next simplest possibility is to take the static solution
¥ = aln p + b, and see if any solution for x is
compatible with it. It is found that only for ¢ = }
can there be any nonconstant solution, and in this
case x may be any function of (¢ — p) or of ({ + p)
(but not their sum, because of the nonlinearity of
the equations).’* So we do indeed find a class of
solutions depending on an arbitrary function of a
particularly simple type for the second degree of
freedom when a 1. Unfortunately, this solution
is of even less physical significance than other
cylindrical metrics. Examination of the behavior of
a distant test particle in the field of the static solution
V¥ = aIn p + b shows that, for 0 < a < 1, the test
particle is repelled from the cylinder, indicating that
it has negative mass. Application of the general
relativistic analog of Gauss’ theorem for static
solutions’® also shows that the gravitational
mass/unit length of the cylinder is proportional to
ale — 1); so that, for 0 < a < 1, the enclosed
gravitational mass is seen to be negative by this
method as well. However, this solution does not
seem to be untypical of the behavior of a class of
solutions for x corresponding to values of ¢ which
make the central cylinder attractive, as a study of
weak linearized solutions to Egs. (2.2) and (2.3)
or the equivalent Eqs. (A12) and (A13) shows. This
solution will be of some interest when we study the

13 J, Boardman and P. Bergmann, Phys. Rev. 115, 1318
(1959) shows this for the Einstein—Rosen case. The author
showed that the same result holds [namely, the loss of energy
is proportional to 8/8¢ (e2v—1)] when both states of polari-
zation are present, in an independent calculation: “Energy
Flow in Cylindrical Gravitational Waves” (Master’s Thesis,
Stevens Institute of Technology, 1959).

1 J, Stachel, Bull. Am. Phys. Soc. 6, 305 (1961).

( 1 ];] T. Whittaker, Proc. Roy. Soc. (London) Al149, 384
1935).
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asymptotic behavior of solutions and the news
function.

1. GRAVITATIONAL NEWS IN CYLINDRICAL CASE
A. Coordinates and Tetrads

In order to see when a news function type of
analysis is possible for the class of cylindrical wave
metrics discussed in the previous section, it is
necessary to introduce a null coordinate so that we
may examine the behavior of the solutions on a
family of null hypersurfaces. Considerations of sym-
metry immediately suggest using v = { — p as the
null coodinate in this case. In the analysis of the
asymptotically spherical case,” one may then proceed
to use either the affine parameter, the luminosity
distance, or the parallax distance along the radial
null geodesics on the null hypersurface 4 = const,
because the ratio of all three distances approaches
unity sufficiently rapidly as we go to infinity (see
Sachs, Ref. 2 for definitions and discussion of this
point). But this is no longer true in the cylindrical
case, for, unless ¢ = 0 or 1 in the static part of the
solution for ¥, the space does not get asymptotically
flat rapidly enough as we go toward infinity along
a null hypersurface, and the ratio of the three dis-
tances does not approach one. So we must decide
which is the most convenient coordinate in this
case. For a cylindrically symmetrie metric it seems
reasonable to define the luminosity distance so that
the brightness falls off linearly with the distance
from a uniform infinite line source. With this defi-
nition, p is the luminosity distance, and it is con-
venient to continue it as one of our coordinates.
Sachs” notes in the spherical case that ‘“the ratio
of the parallax to luminosity distance...appears
as a kind of correction term for the specifically
nonlinear effects of the field in many places... ,”
and we shall find this to be true in the cylindrical
case as well. Since it does not approach unity
{except for @ = 0O or 1), it appears in the final results
that, in many places, it drops out of the spherical
results. Its value in our case is ™%,

It is also necessary to choose an orthonormal
tetrad and a null tetrad (or Sachsbein), with respect
to which we later take the physical components
of the Riemann tensor, Considerations of symmetry
uniquely fix the directions of the timelike and radial
spacelike unit vectors of the orthonormal tetrad,
and thus the directions of the two real null vectors
of the Sachsbein. However, the normalizations of
the vectors are not thereby fixed, and two different
choices prove useful. For taking physical com-
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ponents of the Riemann tensor, it is more useful
to use the sum of the timelike and radial spacelike
vectors for the future outward-directed null vector
*.'* For the study of the field equations and the
news function in this section, it proves more con-
venient to use a slightly different normalization,
since I*, as defined above, is not the gradient of u.
Multiplying * by e¥" (and correspondingly re-
normalizing the other null vector—this amounts
to a Lorentz transformation in the plane of the
two null vectors), we make the new [* the gradient
of u. An element of arbitrariness remains in the
choice of the other two spacelike tetrad vectors
{and thus of the complex null Sachsbein vector).
If x were zero, however, they would be uniquely
defined by symmetry considerations, and we par-
tially remove the arbitrariness by choosing them
to take advantage of the additional symmetry when
x i8 zero.

Orthonormal tetrad Null tetrads
et = e\i‘-v 65: I* = ¢ + et Z's: = ew—w)lu
0 ’ 0 v ’
" = exb—? 5::! nt = %(ep —e“), 7 e 8(7—&)n»’
0 1

1

& =¢ ¥ 8,
2

m* = (1/V2)(" + ie"),

¢ = (& +x ' /0). m = (1/\/é>(§~ — ).
(3.1

In this section we shall refer exclusively to the null
tetrad (I, #*, m*, m*). Straightforward computation
shows that the divergence and the shear of the null
congruence I* are given by

divergence:
9= V,I*=2e"""/p; (3.2)
shear:
o] = (V.INV'L) — 46°
= "YWL = /e + 140" + 5/4(¢,/ )6 1.

(3.3)
For static solutions ¢ = a In p + b, the value of the
shear is [¢*Y"" (2 — a)l/p; and we see that the

value of a strongly affects the shear, as well as the
divergence. For a = 3 the congruence is shear-free,
and as we should expect from the Goldberg-Sachs
theorem,'” the Riemann tensor proves to be al-

8 We use extensively the concepts and try to use the
notations of Bondi, Sachs, Newman, and Penrose in Ref. 2,
wherever possible, but the notations sometimes conflict.
(19%72‘§. Goldberg and R. Sachs, Acta Phys. Polon. 22, 13
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gebraically special in this case (see Sec. IV). For
cylindrical null hypersurfaces in Minkowski space,
le]* = 1(6°), as can be seen from the geometrical
interpretation of the shear and divergence of a null
congruence, or simply by putting ¢ = x =y =0
in Egs. (3.2) and (3.3); so we would expect these
relationships to hold asymptotically for our cy-
lindrically symmetric null hypersurfaces if the space
becomes asymptotically flat fast enough at infinity.
If we compute the asymptotic values of the diver-
gence and shear for outgoing ¥ and x waves super-
imposed on a static solution ¢ = a In p + b, we
indeed find that the cylindrical relations between
shear and divergence are verified asymptotically if
and only if @ = 0 or 1-—the only values for which
the space would be flat except for the radiation
field. For other values of a, although the curvature
tensor asymptotically vanishes as p — o, the
properties of the radiation field are more strongly
influenced by the presence of the static field which
makes many quantities fall off asymptotically more
slowly as p — o than the time-dependent part
of the field does. We see another example of this
behavior in Sec. IV. Thus, the word ‘cylindrical”,
when used in connection with this class of metrics,
implies only eylindrical symmetry; only if a = 0
or 1 does the more strict criterion hold asymptotically.

B. Field Equations

It will be recalled that Bondi ef al.® and Sachs®
show how the field equations break up into four
groups when their components with respect to a
null tetrad are taken: the hypersurface equations,
standard equations, trivial equation, and sup-
plementary conditions. The most important are the
standard equations, which determine the evolution
of the two degrees of freedom of the field and which
lead to the definition of the news functions (we shall
speak of two real instead of one complex news
function); and the supplementary conditions, which
lead to the result that any news decreases the mass
of the system (defined as the integral of the mass
aspect over the two-sphere at infinity).

Straightforward computation gives the breakup
of the field equations with respect to the null tetrad
given above. The hypersurface equation, standard
equations, trivial equation, and supplementary con-
dition are given in the Appendix. Let us look at
the standard equations, (A8) and (A9). They are
just equivalent to Egs. (2.2) and (2.3) written
in null coordinates. In the asymptotically spherical
case, only the asymptotic form of these equations
can be written down, and even these involve other

JOHN J. STACHEL

parts of the metric besides the two functions defining
the two degrees of freedom of the field, so that these
degrees of freedom are only implicitly given by the
standard equations. In the cylindrical case, the exact
equations involve only ¥ and x, so that their evolu-
tion and interaction is explicitly isolated from the
rest of the metric. (Of course, we pay for this
mathematical simplicity at the expense of physical
realism in the model.) It proves most useful to
replace x by x = €**z/2p in future work, since
¢ and % enter more symmetrically into the stand-
ard equations; and (more importantly) they then
both have the same type of asymptotic behavior
at infinity, as we show. Our choice of ¢ and
% to represent the two degrees of freedom of the
cylindrical gravitational field differs from that of
Sachs.? Roughly speaking, and disregarding the non-
linearities which make these statements only asymp-
totically true, his choice represents a symmetric
choice of the two functions about the axis 8 = 0
in his coordinate system, so that for axially sym-
metric solutions he takes his two degrees of freedom
equal. OQur choice represents the ‘“sum’ and ‘‘dif-
ference” of his functions, so that for the axially
symmetric solutions one of our functions vanishes
(x =0).

The standard equations in terms of ¥ and %,
Eqgs. (A12) and (A13), may be put into the form

X, =fY 4 gX +h, (3.4)
Y,=uX +0Y + w,

I

(3.5)

where X = ply ., Y = plx., and u, v, w and , ¢,
h are functions of ¥, x and their derivatives with
respect to p. Thus, if we are given the values of
X and Y at some point p = p, and the values
of ¢y and x over the rest of the null surface v =
const, these equations may be integrated to give
the value of X and Y over the rest of the null
hypersurface. If we are given the values of ¢ and
x on some initial null hypersurface © = u,, and the
values of X and Y on the timelike tube p = p,
(or any other timelike tube for that matter) we can
then determine the evolution of ¥ and k% off the
initial hypersurface v = u,. This of course is just
a particular example of a null hypersurface initial-
value problem for a system of hyperbolic partial
differential equations, and illustrates the general
result that initial data on the null hypersurface
never suffice to determine a solution, but must be
supplemented by data off the hypersurface.'®

18 See article by Sachs in Ref. 1 for detailed discussion and
references.
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So far, our analysis would apply to any solution
of the standard equations, representing any mixture
of incoming or outgoing waves. If the timelike tube
bearing the “news” (not contained in the hyper-
surface Initial data) is placed at any finite value
of po, any solution can be described in this way.

C. Definition of Outgoing and Incoming Radiation

In an attempt to limit the class of solutions to
those characterized by outgoing radiation only,
Bondi et al” and Sachs® set boundary conditions
on the metric analogous to the well-known Som-
merfeld radiation condition; while Newman and
Penrose’ set conditions on the asymptotic behavior
of the Riemann tensor. Both approaches proved
essentially equivalent. In this section, we follow
the Bondi-Sachs method of examining the metrie,
leaving discussion of the Riemann tensor for the
next section. The Bondi-Sachs boundary con-
ditions proved strong enough to enable them to
define a news function at infinity. Specification of
certain data on the initial null hypersurface, plus
the news function on the two-sphere at infinity for
a range of values of u (what we shall call the timelike
tube at infinity) as well as certain data on the initial
two-sphere at infinity serve to determine a unique
solution to the field equations. It was soon realized
that this class of solutions would have to include
at least some with finite pulses of incoming radiation.
Since one was basically working by analogy with
linear theories, and had no independent definition
of incoming or outgoing radiation in the exact
theory, nor any exact solutions on which to test
these concepts, it seems of interest to see how these
ideas work out in our case, where we can give an
independent meaning to incoming and outgoing
radiation solutions, and even write down certain
exact solutions.

The form of the metric Eq. (2.1) is canonical,
in the sense (among others) that the only coordinate
transformations of p and ¢ which do not change
this form are linear: 5 = kp, # = kt + ¢.”° So the
null hypersurfaces 4 = t — p = const., v = { +
p = const. are uniquely defined. We can thus define
incoming and outgoing solutions to the field equa-
tions as those solutions that are generated respec-
tively by incoming and outgoing solutions to the
equations for ¢ and x, Eqs. (2.2) and (2.3); or
equivalently to those for ¢ and %, Eqgs. (3.4) and
(3.5). In the case where ¥ = 0 (the Einstein—-Rosen

1% For a discussion of allowable coordinate transformations
in the Einstein~Rosen case see Ref, 12. The results for p and ¢
can be trivially generalized.
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case), this means incoming and oufgoing solutions
to the scalar wave equation for ¢, or any linear
combination of them, generate corresponding solu-
tions to the field equations. To give a precise
meaning to the concept of incoming and outgoing
waves in a nonlinear theory, we adopt the following
definition.” A time-dependent disturbance prop-
agating itself into a region where all the field
variables are time-independent must have its wave-
front on a null hypersurface. If the null hyper-
surface joining the time-independent and time-de-
pendent regions is a forward null hypersurface u =wu,,
we call the disturbance an outgoing wave. If the
null hypersurface joining the two regions is a back-
ward null hypersurface v = »,, we call the disturb-
ance an incoming wave. Notice that this definition
does not restrict us to wave pulses, since the dis-
turbance need never cease once it has started, but
does exclude disturbances infinite in both time
directions. For linear theories it is easy to extend
the concept of outgoing (or incoming) waves to
cover this case by defining any superposition of out-
going (or incoming) waves as an outgoing (or in-
coming) wave; but it is not so easy to see how to
define outgoing and incoming waves infinite in both
directions in the nonlinear case. At any rate, we
do not need such waves for our purposes, and leave
open the question of such a definition.”

On this definition of incoming and outgoing waves,
it is clear that the solution x = g(u) or x = g(u)/2p*
with ¢ = 1 In p, is an outgoing solution if g(u) = 0
for u less than some u,; while x = g(») or x = g(v)/2p!
is an incoming solution if g{») = O for v less than
some .

D. News Function

We define the news function for this class of
metrics by giving the “news” off the null hyper-
surface on the timelike tube at infinity. More ex-
plicitly, we define two functions de,/du and de,/du:

dey/du = lim (p*y..), (3.6)

poes

2 A, Jefirey and T. Taniuti, Nonlinear Wave Propagation

(Academic Press Inc., New York, 1964), define a wave as a
disturbance propagating itself into a state in which all field
quantities are constant in time, and then restrict themselves to
propagation into states constant in space as well as time. This
seems too restrictive in two ways: it restricts the concept of
wave to pure incoming or outgoing radiation, and it does not
allow the wave to propagate into regions of static field; so we
have modified their definition as indicated in the text.
. 2 One’s first thought might be to define outgoing radiation
in terms of the asymptotic behavior of the solution at infinity:
for example, in terms of the power series expansion in powers of
1/r for spherical waves. But the example given in the next
section shows that, at least for fixed u,, it may be possible to
expand certain incoming solutions {(on the above definition)
into the corresponding cylindrical power geries in 1/p¥),
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dey/du = lim (p%,.).

p—ro

(3.7

Clearly, for these functions to exist, ¢ . and %, must
behave as O(p?) as p — «.** But this is characteristic
of the behavior of outgoing cylindrical waves; in
the next section we show that any outgoing wave
solution to the standard equations satisfies this
criterion. If we restrict ourselves to the Einstein-
Rosen case for simplicity, the most general out-
going wave solution can be built up out of a super-
position of Hankel functions of zero-order times
exp (ikt) terms, which asymptotically behaves like
3= falw)/p ™ P.*® Thus, it is certainly true that
a news function exists for all outgoing solutions to
the field equations. More interesting is the question:
does a news function exist for non-outgoing solu-
tions? If we take an incoming solution which is
asymptotically of the form f(v)/ o}, it is clearly
possible that if f(v) vanishes for v greater than some
finite value, then this solution may have a news
function. This is not as trivial as in the case of
spherical waves, because of the existence of tails on
two-dimensional wave pulses,” but it can be shown
to be possible for certain incoming pulses by the ex-
amination of the asymptotic form of the tail in such
cases. Therefore, finite pulses of incoming radiation
cannot be excluded by a news function requirement.
More unexpectedly, we find that certain infinite
incoming wave trains also have finite news func-
tions—namely zero news—if they fall off fast enough
as v approaches infinity. For example, take our
solution ¥ = g(»)/ of clearly of the expected asymp-
totic form. If we let g(v) = Z;‘,",l a,/v" for v greater
than some fixed »,, then lim,_. x = 0 on %, = const
and dc,/du = 0, so this describes a solution meeting
requirements analogous to those in the asymp-
totically spherical case and representing an infinite
incoming wave train. Of course, this solution is of
no physical interest; but it does serve to show that
it cannot be automatically assumed that all infinite
incoming waves are eliminated by the Bondi-Sachs
definition of asymptotically flat spaces. It may turn

22 We use the expressions “‘order of”’ or O loosely, and
assume that all asymptotic series needed can be differentiated
as often as necessary. More careful mathematical treatment
might be possible and useful in the cylindrical case, but we
ignore these problems here. ] )

23 A careful discussion of the asymptotic behavior of Hankel
functions of zero order is found in A. Erdelyi, Asymptotic
Ezpansions (Dover Publications, Inc., New York, 1956). A
useful mathematical discussion of solutions of the scalar wave
equation in two dimensions is found in B. Baker and E.
Copson, The Mathematical Theory of Huyghens’ Principle
(Clarendon Press, Oxford, England, 1950), 2nd ed.

% H. Lamb [Hydrodynamics (Dover Publications, Inc.,
New York, 1945), 6th ed., p. 299] discusses the tails of
cylindrical waves.
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out that examples such as this are peculiar to the
cylindrical case. But should there prove to be
analogs in the asymptotically spherical case, they
might shed some light on the problem of the phys-
ical significance of the class of time-dependent solu-
tions with vanishing news function.?®

E. Mass/Unit Length

Now we define the cylindrical analog of the
mass aspect, whose integral over the two-sphere
at infinity is interpreted as the total enclosed mass
in the asymptotically spherical case.” In our case
it can only be a mass per unit length that we can
expect to define, since the field is independent of
the 2z coordinate; and because of the cylindrical
symmetry the mass aspect will be a function of the
null variable % only, and so will coincide with the
mass per unit length. It is the supplementary condi-
tion, Eq. (A11), which gives the relation between
the mass/unit length and the news functions. If we
define dM(u)/du = % lim,.. v, then for those
solutions for which the asymptotic behavior of ¢
and g is of the form f(u)/p* as p — o, taking the
limit of the supplementary condition yields

dM/du = —[(de,/du)’ + (de./dw)’],  (3.8)

so that the mass/unit length always decreases if
there is any news. Looking at the hypersurface equa-
tion, Eq. (A7), we see that it can be integrated
to give

v, u) = fa Fdp + f (M /dv) du + M,, (3.9)

where F is a function of the values of ¢ and % on
the initial hypersurface v = u,, and M,, is a con-
stant of integration representing the mass per unit
length on the initial hypersurface. Thus, to specify
a unique solution to the field equations we need
to give the values of ¥ and % on the initial null
hypersurface, the news functions on the timelike
tube at infinity, and the initial mass/unit length.

One might wonder why no functions analogous
to N, defined on the two-sphere at infinity and
needed for the full specification of the initial data
in the spherical case, occurs here. The presence of N,
which seems to be connected with the angular
momentum and dipole moment of a rotating source,
depends on the occurrence of cross terms in the
metric between v and the coordinates of the space-

2 R. Penrose [Proc. Roy. Soc. (London) A284, 159 (1965)]
has also suggested that the time-dependent solutions as-
sociated with no news are connected with the presence of
incoming radiation.
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like two-surfaces on a null hypersurface—z and ¢
in our case. Since the metric (2.1) does not involve
such cross terms, N vanishes here.

If ¢ contains a static term a In p + b, v will
contain a term a’ In p + ¢, so that we cannot define
M as lim,..... v. We can remove this infinite contribu-
tion from the static cylinder by defining

M = lim (y — o’ In p). (3.10)

prco
Since it is only dM /du which is defined by the supple-
mentary condition, this does not affect the energy
balance equation.

If an initially static solution ¢y = a In p + b,
v = a’ ln p + ¢ emits a pulse of radiation, it never
becomes fully static again because of the well-known
tail property of two-dimensional wave propagation.
However, as u — o, the solution becomes asymp-
totically static again, as Marder'' has shown. He
further shows that, while b and ¢ change values
during this process, a remains unchanged. Thus,
the renormalization of the mass/unit length sug-
gested here is independent of the surface on which
it is carried out, and makes M a measure of what
we might call the disposable gravitational mass, the
amount available for radiation. Some further com-
ments on the possible connection of this phenomenon
with the recently discovered ten exactly conserved
quantities in the asymptotically spherical case are
found in the next section.

It is of some interest to note that this result
agrees with the definition of mass/unit length of
a cylindrical gravitational field arrived at by
Thorne,'” on an entirely different basis. He defines
a C-energy flux vector, uses it to define the energy
per unit length enclosed within a cylinder of radius
p, and finds it to be proportional to v(p, {). As p — «
this result passes over into the mass/unit length
defined above, if we renormalize Thorne’s definition
as suggested above.

IV. ASYMPTOTIC FORM OF THE RIEMANN TENSOR
A, Petrov Type

The physical components of the Riemann tensor
with respect to the orthonormal tetrad and null
tetrad of Sec. III are given in the Appendix. Note
that ¥, and ¥; are zero for this entire class of
metrics. This enables us to make a simple application
of the technique outlined by Janis and Newman®
for finding the Petrov type from the ¥’s. This con-
sists essentially in carrying out the four null rotations
about »n* which take [* into a principal null vector.
Since ¥, vanishes for a principal null vector, and
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since the effect of such a null rotation is to change
¥, into

\I’(,) = ‘I’o + 4b\I'1 + 6b2 2 + 4b3\1’3 + b“I’4 = 0, (4.1)

where b is the parameter specifying the null rota-
tion, we need merely look at the multiplicity of
the roots of Eq. (4.1) to find out about the possible
coincidences of principal null vectors that char-
acterize the Petrov type in the Penrose formula-
tion.”® Since ¥, = ¥, = 0 in our case, we can only
have four distinet roots or two double roots, and
the metrics must be of type I or D. The static
solution ¢ = a In p is of type D; all others examined
have proved to be of type I, including the linearized
general solution; but no proof that other exceptional
cases of type D cannot occur has been found.

B. Peeling Theorem

For an examination of the asymptotic behavior
of the Riemann tensor it proves much more con-
venient to use the function ¥ = ¢**x/2p to char-
acterize the second degree of freedom. While the
field equations and Riemann tensor become more
complicated, ¥ and % have a common asymptotic
behavior. We note that if we linearize the standard
equations in terms of ¥ and ¥, they become identical
to the equations for A, and A,, respectively, in the
corresponding cylindrically symmetric problem for
the Maxwell field. To study the asymptotic form
of the outgoing wave solutions of the standard
equations, Egs. (3.4) and (3.5), we look at what
happens on the null hypersurface v = u, separating
the static and wave regions. On this surface, the
field in the exterior region must be that of a static
cylindery = aln p, ¥ = 0. If we assume the solution
to be analytic in u, successive differentiation of Eqs.
(3.4) and (3.5) enables us to study the buildup of
the wave into the region of disturbance u > wu,.
We find that (¥ .)u-u. a0d (X .)u-v, can only be of
the form a(u)/p! and b(u)/p?, respectively. The
second derivatives already introduce interactions
between the two degrees of freedom due to the
coupled nonlinear nature of the equations. We can
verify, for example, that if x is zero, the ¥ wave
propagates obeying a linear equation, each dif-
ferentiation with respect to u bringing in successive
powers of [p™*¥]™". If % is not zero, however, the
interaction between the two degrees of freedom
generates a ¢ wave, if one was not present initially
(unless @ = %, in accord with our result that this
is the only value of a for which a pure ¥ wave

# R. Penrose, Ann. Phys. 10, 179 (1960).



1328 JOHN

is possible), and in any case introduces terms of
order 1/p" into the structure of ¥ and x. So instead
of the expansions into powers of 1/r that characterize
the asymptotically flat solutions in the asymp-
totically spherical case, we find here that a power
series expansion of the form Y .2, a,.(u)/p! char-
acterizes the solutions to the standard equations in
the cylindrical case, for outgoing radiation. We shall
therefore examine the structure of the Riemann
tensor on the assumption that ¢.., and x are of
0(1/p!) as p — . In this case we find
¥, =000/, W = SYT00/6Y,

W, = Y77 [0(1/6"*) + ala — 1)(2a — 1)/5°], 4.2)
so that there is a “peeling theorem’ in the cylin-
drical case, just as in the spherical one. The ratio
of the parallax to the luminosity distance ‘™"’
occurs as a factor in each of our terms, and will
only approach unity for ¢ = 0 or 1.

For static solutions, 2(¢ — ) has its maximum
value when a = %; for this value 2" = . So
the static part of ¢*¥~" is always of order less
than p’, except when a = % (the shear-free case).
Since the highest power occurring in the other factors
in the Riemann tensor is of order 1/p?, this means
that the Riemann tensor always vanishes asymp-
totically, except for ¢ = %. At any rate, to order
& /ot only ¥, 5 0, and the metric is of type N.
Terms of order ¢*¥~7’/p also occur in ¥,, so that
to order e*¥~"/p the Riemann tensor is still of
type N. To order ¥~ ""p¥ ¥, and ¥, do not vanish;
there are then two distinct and one double root,
and the metric is of type II. Terms of order ¢° ¥~ 7p’
occur in ¥, as well; but whether they occur in
¥, depends on the value of a. If @ = 0 or 1 (flat
space) or a = % (shear-free case) they do not;
in this case the metric is still of type I to order
€9 7p% in the general outgoing radiation case.
If @ has any other value (and this includes all posi-
tive static mass cases) terms of order ¢*¥~"’ /o’ oceur
in ¥,, and the metric is then of type I in the general
outgoing radiation case.

In the purely static case (¢ = a In p + b), the
metric is either flat or of type D. So we may write

- N K N,vx)\
62(7 \”R,,,,K)\ — 9 pu; A + [o} ;

I(I1, D), Loy
0( 2)#X+O;;/2x,
P P
where it is clear from the preceding discussion when

the 1/p° term is of type IT or D.

One might ask: If we reverse our reasoning and
assume that ¥~ "', is of order 1/p%” in its radia-

OII;A;K)\ (4 .3)

+ +
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tive part, do we thereby eliminate infinite incoming
radiation trains from the class of admissible matrics?
Our previous incoming wave example, x = 3 o, a,/v"
for v > v,, shows that we do not. For it gives con-
tributions of order 1/p** to €*"~¥¥,, of order
1/p% to ¥, and of order 1/p! to &7 Vv,
This raises the question of whether the Newman—
Penrose condition’ that ¥, be of O(1/r®) in the
asymptotically spherical case really eliminates all
infinite incoming radiation which falls off fast enough
as v — . The remarks at the end of the last section
on the Bondi—Sachs definition of asymptotic flatness
apply here as well.

C. Exactly Conserved Quantity

The expression ¢>7~¥’ ¥, always leads off with the
term [a(a — 1)(2a — 1)]/p® for any outgoing radia-
tion solution, and for the class of incoming solutions
just discussed, which we have seen meet the asymp-
totic conditions. This suggests that this term may
be the cylindrical analogue of the ten exactly con-
served quantities discovered by Newman and Pen-
rose’’ in the asymptotically spherical case. There is
a difference in the order in which these terms enter
¥,. In the spherical case the ten conserved quantities
are associated with the term of O(1/7%) in ¥,, just
after the leading term of O(1/r°). In the cylindrical
case the 1/p° term is the leading term in &2~
¥, (if it doesn’t vanish). Indeed, in the cylindrical
case we may define the conserved quantity as
lim,.. p’e¢*¥""¥, for this reason. But this may
just be another instance of the strong effect of a
on the geometry in the cylindrical case—it already
enters the shear to O(1/p). Marder'* has noted that
there are two constants associated with a static
cylinder, as mentioned in the last section; one of
them changes when the cylinder radiates, the other
(our @) does not. At the time, this seemed a pecu-
liarity of the cylindrical case. With the discovery
of the ten exactly conserved gravitational quantities,
this may actually be an additional analogy between
the two cases.

V. CONCLUSIONS

We have seen how a news function analysis of the
cylindrical radiation metrics described by Eq. (2.1)
may be carried out. The class of solutions that can
be included in such an analysis in this case, where
we can pick an invariant set of forward and back-
ward null hypersurfaces and thus give an independ-
ent definition of the concepts of outgoing and incom-

27 B, T. Newman and R. Penrose, Phys. Rev. Letters 15,
231 (1965).
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ing radiative solutions, has been shown to be wider
than the class of outgoing radiative solutions (by
time reversal, all our comments could be applied
to incoming solutions, of course). It includes mix-
tures of outgoing and incoming pulses; and perhaps
more surprisingly, certain infinite incoming waves.
‘Whether this can happen in the physically more
important case of asymptotically spherical solutions
Temains an open question.

A peeling theorem for the cylindrical case has
been established, allowing the distinction between
three zones: a far zone of type N, an intermediate
zone of type II, and a near zone of type I in general.

The mass/unit length has been defined, and shown
to always decrease if there is any news. A quantity
which seems to have a close analogy with the ten
exactly conserved quantities in the asymptotically
spherical case has been defined for the cylindrical
case.

Enough qualitative similarity thus exists between
the cylindrical case and the asymptotically spherical
case to suggest that it is worthwhile to attempt to
study certain questions in this case which are so
far intractable in the spherical case.

The absence of any analog of N, the function
connected with the dipole moment in the spherical
initial data, suggests that it may be possible to
generalize this class of solutions. A study of the
analogous problem of eylindrically symmetric Max-
well fields shows ¢ and i to be closely analogous
to A, and A,. If the Maxwell tensor F,, is projected
onto the null tetrad analogous to ours in flat space,
three complex ®’s are obtained, &,, ®,, ®,, as shown
by Janis and Newman.* If only eylindrically sym-
metric A, and A, are used, ®, vanishes, just as
¥, and ¥, do for the metric Eq. (2.1). A difference
between the two cases is that in the electromagnetic
case, the vanishing of &, means that the field of
a static charged cylinder cannot be represented by
A, and A, alone; while in the gravitational case
no such restriction arises. However, there are addi-
tional static magnetic solutions, in the electromag-
netic case, representing the field of a rotating charged
cylinder and a cylindrically symmetric current in
the direction of the axis of the cylinder, which
require ¢ and A, for their description. Such fields
are presumed to have analogs in the gravitational
case, which cannot be described by metrics of the
type Eq. (2.1). In particular, van Stockum® has
given an exterior stationary metric for a rotating
cylinder which is not of this type. We hope to

( 28 \)N van Stockum, Proc. Roy. Soc. (Edinburgh) 57, 135
(1937).
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examine the question of generalizing the cylindrical
radiation metrics to allow for these possibilities.

Another important question is the relation be-
tween the exterior field and the sources. While some
work has been done on the relation between cy-
lindrically symmetric radiation fields and interior
solutions that might generate them,'’ much remains
to be learned about just what types of source be-
havior are correlated with the two degrees of freedom
of the radiation field—whether only explicitly time-
dependent equations of state can be used to generate
gravitational radiation, ete.

A study of the physical role of ¢ in the exterior
field and its relation to interior continuations of
the metric, started by Marder,’* may throw further
light on the ten exactly conserved quantities in the
spherical case, if the analogy suggested above is
valid. We hope to look into some of these questions,
too.

We have defined a class of outgoing and a class
of incoming wave solutions in the cylindrical case
by demanding that there be a region of time-
independent fields separated from the time-depend-
ent wave region by a forward-pointing null cone
u = u,, or a backward-pointing null cone v = y,,
respectively. Possibly these definitions are too re-
strictive, but they certainly represent nothing but
incoming or outgoing radiation, so let us call these
solutions pure outgoing or pure incoming radiation
solutions, respectively. This immediately suggests
the generalization of these concepts to the asymp-
totically spherical case, where we again demand the
existence of some null cone (forward or backward)
separating regions of stationary field from nonsta-
tionary field. We then have one invariant null cone
in each solution of these two classes. Thus super-
translations,”® and indeed all translations are ruled
out by this invariance property. On the other hand,
homogeneous Lorentz transformations merely take
this null cone into itself. Thus, these two classes
of solutions are invariant under the homogeneous
Lorentz group. The absence of translations and
supertranslations should make it possible to define
angular momentum and multipole structure uniquely
and invariantly for this type of solution. We are
investigating these questions.
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APPENDIX
We list here some quantities that may be useful in working with the metric Eq. (2.1).
(a) Christoffel symbols in null coordinates:
Lo =20 — ¥ — (v, — ¥, I =" (Y — ¥.0),
i, ="y, Tl = € [ — x.0) + x(¥u = ¥.0)],
i = ¢ 7Gx + ¥.%), o = ¢ 0w — x.0) + X’($u — ¥.,)]
+ e (Y., ~ ¥.)0° — ol
T = %o + x¥.0) +¢70(1 — p¥),  Ti = ¥ — 300./p),

Pcu = ('Y,p - ‘p.p) - (7.u - ‘P.u); I‘:¢ = ‘p,u + 'l’.ux + (e4¢/p2)[xz(‘l’.u - X.u) - xa'ﬁ.u]-
I‘Zp =Y., — ¢.pr (Al)
(b) Spin coefficients for null tetrad I*, #*, m**':
62(\#—7)
p=—"g > u = —1/4p,
e = — (@7 /4p)x.,, y=3r—-¥.,—- @ - Y.+ (iew/‘lp)(% ~ x...),
- .2 \// iez‘ﬁ X
0= @200 - 200, i) A= v G Vb + - xl), @)
a=f=k=yv=7=7=0.

(¢) Physical components of the Riemann tensor with respect to the orthonormal tetrad:
Roor = 82(w~7)[(7'” —Ye0) — (Woee — ¥l
Rozor = QZ(w‘y)[\b.u + 2‘#?: + ‘l’?p — vV — v, ¥, — %X?zew/Pz]y

Rozos = 32(w~7)[_¢.tt - w?p + v, ¥ +r¥.. + L%’Y‘e + %X?te“’/Pz:l,
Rine = &V [, + 200, + V1 — v.b — 7,00, — 25/,
Rizis = ez(d/—v)[_'p'” - 'l/zt + v vV, — LL:;':—Z-LE + %X?peh’/f’z]:

Roses = ezw-"){‘//.zt - '/’.zp + ‘/’.p/P + %[(X.zt - X.zp)/PZJew},
Rigos = 34"—27[#»7(.:/!’ - X.p‘/’.t/P - X.t/2P2]1

_ av—2v) _Xoet X.o¥.t XYt _ 27(.!‘,’.43 X.Y.p _7_(_£:|
R0 = € 20 0 + 20 o + 20 +2p2 ,

_ av-zy Xt | 2V XVt | XV _ x.r/,,,j]

Ris02 € | 2o + P 2 + P 20 |’
R = ¢tV2 Xipo _ Xep éxu"p.p _ XY + XY _ X,t'Y.t:l
1218 | 2p 20072 2p 2p 20 I

3Dy, J. Ehlers (personal communication).
at Caleulated by William J. Sarill.
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Rozo3 = ew 21[*2‘;‘& + ép 2 —

Ragoy = ez(#/-v)w,.ﬂ + 3¢, —
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X. Y0 + Sx.¥. . X,t')".t:l
2p 2 » 20 1
v — Vv — xax.et/o%],
Raosy = 32(‘0-7)["‘:{’.“ - Kl".t‘!’.p + ¢y, + ‘&.p"l’.t - Z‘: -+ %X.px.zew/l’z]‘ (A3)

(d) Complex components of Riemann tensor with
respect to the null tetrad®':

Yy = —Cuplm’U'm’

= ezwnﬂ{h’.p/P + 2v.,.¥, — 4‘#?;» — V.5l

. 2y
+ ?E;" by.ox.. + X.p/zp — 3¢ X.e — x.pp/?‘]}’ (AA)
Y, = —C,, 70" I'm’

_ ew—w{[%(.y = W= — ¥l

+ (iez"'/2p)[¢.ux.p + Xz’i - W.px.u]}, (A5)

Y, = O, 0 mn’

- 62(‘;’—7){[5",;“ - ‘p,m‘ — tp,pp/4:

(-2 - L))

- %(‘p.ﬂ - Q'P,u)z + (e‘hﬁ/sz)(_x_z.g - x.u) ]
+ (/20 [(3x., — x.)
X (33&‘;’ - 6‘[";5 - Y. + 27.-; - l/zp)

= X.ou F X + X,pp//‘ﬂ}' (AS)

{e) Field equations in null coordinates:
(1) hypersurface equation

R,IT = &7 (2¢), — 2v../p + (" /207X,]; (AD)
{2) standard equations

Re B, m"m’)
=<2 + Vo + (B — V)0

+ €/20x xs = X1, (A8)
Im (B, m'm’
= (€"7"/20) [~ 2x,0u + Xooo — (.o — X)/P
+ A — XV — X5 (A9)

(3) trivial equation
R#V—“ﬁ’ = ezut«-»y) [(27.“ - 7.99)
- (230,” - ‘l’.pp) + 9&.0(2‘11,11 - ‘P,p)
+ (¥, — ¥.)/p + (€7 /40) @x.oxu —
(4) supplementary condition
R = 24, + ¥,/2
— 2%, + (/2027 — 7.0
+ /20008 + B — xxa).  (ALD)

In order that the two degrees of freedom enter
into the standard equations in such a way as to
show the same asymptotic behavior as p — o,
it is necessary to replace x by x = €*¥x/2p. The
expressions for the Riemsnn tensor, ete., become
must longer in this case, but the two degrees of
freedom enter symmetrically with respect to their
asymptotic behavior. We give only the standard
equations in terms of ¢ and %:

Xl (Al0)

—@¥.u — Vo) T (¥, — ¥.J)/p

+ 40 = 2¥.0) ., — 2¢..% + X/P)

— 20k, — 2¥.x + X/0)° = 0; (A12)
= 2%.u — Xuos) T (X0 — X.)/p
= %/0" + 2%[C¥.p — ¥.0)
+ W = ¥)/p —2¢,2¢.+ ¥.)] = 0. (A13)
Using Eq. (Al2) to eliminate (2¢,., — ¢,,) from

Eq. (A13), we get Egs. (3.4) and (3.5) of Sec. III,
with

f=2%,— 4x¥., + 2%/p,

g = —4%.%+ 8¢5 — 4/ p,

b= (/2)¥., + ¥.,/20" + 4o'x %%, — 40173
— 0% — 2070 + 410 — 26

= —4y,x — 2%/p — 8%’%., + 163°¥., — 8%°/p,

v =4%%., — 8¢, + 4%°/0,

Pon/2 + %.0/20% — %/20% + 29,3/ 0t

— 2o80% + 80'%.. %"V, — 80N — 20%%%

— 4% ,x°/0* + 8y, %'/t — 28°/0t. (A14)

w =
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On the Motion of Electrons Scattered from an Infinite Slab*
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A nonlinear integral equation of the Volterra type is derived to describe the motion of the electrons
egressing from an infinite slab—one formed by parallel planes of infinite area. This motion depends
on (1) the flux density of electrons egressing from the slab, and (2) the distribution of the forward
components of the electrons’ velocities upon egressing from the slab, i.e., the velocity components
along the normal to the slab. It is proved that the nonlinear integral equation can be solved by a
method of successive approximations and that the solution is unique. The integral equation is solved

for two special cases.

The most important application of this work is in the study of electrons scattered by the high-
density gamma flux from a nuclear explosion. Therefore, the treatment presented is made directly

applicable to that study.

INTRODUCTION

HEN the high-density gamma flux from a

nuclear explosion interacts with an object, a
copious supply of electrons recoils from it. Not only
does this result in a large static electric field buildup
but also a large rf field may be generated.’* Both
of these phenomena depend upon the equation of
motion of the recoil electrons. But the determina-
tion of this motion requires treatment of a compli-
cated self-consistent field problem.

For convenience the electrons are considered to
recoil from an infinite slab (one having parallel
surfaces of infinite area) which is irradiated uni-
formly over one surface by unidirectionally prop-
agating gamma rays. Also the electrons are con-
sidered to emerge into a vacuum or a medium where
energy losses due to collisions are negligible. The
flux density of the egressing electrons along with
their velocity distribution is assumed to be known.?
Based on this knowledge a nonlinear integral equa-~
tion of the Volterra type is derived. It is proved
rigorously that the integral equation can be solved
by a method of successive approximations and that
the solution is unique.

The motion of the egressing electrons is obtained
for two special cases: (1) the flux density of the
egressing electrons is considered to be approximately
that which is scattered out of the slab by the flux of

* Portions of this work are abstracted from a doctoral
dissertation by C. D. Taylor, completed under the direction
of Dr. R. H. Duncan at New Mexico State University, Uni-
versity Park, New Mexico.

This work was supported by the U. S. Atomic Energy
Commission.

1'W. J. Karzas and R. Latter, Phys. Rev. 126, 1919 (1962).

2 C. D. Taylor, “Some Electromagnetic Effects of High
Density Gamma Flux Interacting with Matter,” SC-R-65-
933, Sandia Corporation, Albuquerque, New Mexico (1965).

3 These have been obtained in approximate form in Ref. 2.

gamma rays from a nuclear explosion, and all the
electrons are considered to emerge from the slab
with the same velocity (the average velocity of the
electrons scattered from the slab by gamma rays
from a nuclear explosion); and (2) all the electrons
are considered to egress from the slab at once with a
velocity distribution which crudely approximates
that of the electrons which are scattered from the
slab by the gamma rays from a nuclear explosion.
After obtaining the electron motions in each case the
resulting electric fields are obtained.

ANALYSIS
Equation of Motion

The electric field and the equations of motion of
the electrons scattered from an object depend upon
the geometrical configuration of the object. Since
the object is considered to be an infinite slab ir-
radiated uniformly over one surface by unidirection-
ally propagating gamma rays, the flux of electrons
recoiling from the slab is uniform over planes parallel
to the surface of the slab (see Fig. 1). Consider the
temporal variation of the incident gamma-flux den-
sity to be given by T'(7), i.e., T(r)dr is the number
of gamma photons per unit area striking the slab
surface at times between r and r + dr. The flux
density of the electrons that are scattered from the

AAAAAAAA::: 2
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GAMMA. FLUX IRRADIATED SLAB

FiG. 1. The irradiated slab with the incident gamma flux and
the electrons that are knocked out of the slab.
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slab is T(r) [} G(u) du, where T(r)G(u) du is defined
as the number of electrons per unit area egressing
from the slab with forward velocity components* in
the range 4 and u 4 du, and u is the velocity com-
ponent in units of the speed of light.

The number of electrons scattered from the slab
per unit area with forward velocity components
between u and u + du and at times between 7 and
r + dris given by G(u)T(r) dudr. The space charge
density d°p(z, t) with only these electrons present is

&p(z, 1) = GW)T(7) du dr {3(x) — 8@z — B}, (D)

where the first Dirac delta gives the residual charge
density on the slab surface at # = 0; the second
Dirac delta is the contribution made by the electrons
that were scattered from the slab; and x = £(u, 7; ¢)
is the position at time ¢ of the electron that is scat-
tered from the slab with initial velocity component
along the normal to the slab u at time ¢ = 7 (see the
figure). The integration of (1) yields

oz, 1) = ¢ f Cdr f ' du T()6 )

X {8@) — oz — £, ; 01}, (@)

The electric field produced by this charge density
is obtained by the use of Maxwell’s equation

div D = p(z/, ?). (3)

Because of symmetry there is only one component of
the electric field. Integrating (3) over «’ from 0 to
z and considering the field to be zero inside the slab—
requiring it to be a good conductor—yields

Be ) =2 [ ar 1) [ duGntets, 79 — al,
@
where
7(z) = 0,
=1,

z2 <0,
z> 0.

The electric field is directed normal to and away from
the slab.

For the electron energies of interest, relativistic
corrections amount to only a few percent in the
motion of the electrons; therefore, the formulation
presented here will be nonrelativistic for the sake of
simplicity. Starting with force equation of the elec-
tron and integrating it twice over time, the following
equation is obtained:

4 The forward component of an electron’s velocity is the
component along the normal to the slab.
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Equation (4) can be combined with (5) to obtain the
nonlinear integral equation of motion

B, ri) = — A f dt' Kit@, 73 ¢), ¢, (6

where

A =é/me, & =cult— 1),

and
Klgtu, i), ] =t~ ¢) [ dv

% f L GET( e, 7 ¢) — £, 7 0], (7)

which is a nonlinear integral equation of the Volterra
type.

Existence of Solution

In many cases it is impossible to obtain a closed-
form solution to a nonlinear integral equation. And,
even though the nonlinear equation represents a
physical process, it may not possess a unique solu-
tion.’ Evidently it is essential to show that the solu-
tion of (6) is unique.

It is readily seen that & = cu(t — ) is integrable
and bounded in the interval r < ¢ < b and that &
satisfies the Lipschitz condition in the interval
7 < t < b, where b is some finite positive number
greater than r. The kernel, K[£(u, 7; t'), {'], is pro-
portional to the number of electrons further from
the slab than x = &(u, 7; t") and thus is continuous
and bounded in the domain ¢ > =, ¢’ < b, and
|&| < ¢, where ¢, is some finite positive number.
Suppose that ¢,K[¢(u, 7;t'), t'] gives the total number
of electrons further from the slab than &(u, =; t').
Then

[Klg, ] — KE, )| < M |g — El/es,  (8)

where M = 1 4+ the maximum density of electrons
occurring outside the slab, From (8) it is now estab-
lished that the kernel satisfies the Lipschitz condi-
tion. Therefore, according to the theorem by Davis®
on nonlinear integral equations of the Volterra type,
(6) possesses a unique solution that may be obtained
by the method of Picard, a method of successive

5 E. E. O'Donnell, unpublished Notes, (January 1964).

¢ H. T. Davis, Iniroduction to Nonlinear Differential and
In)fggal Equations (Dover Publications, New York, 1962),
p. 415.
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approximations which takes £ as the zeroth ap-
proximation.

Solutions of the Equation of Motion

The solution (6) may become a tedious process
depending upon the functional forms of G(u) and
T(7). Two special cases are solved illustrating the
method of solution. First consider

Gx(u) = GO(S('U, - uo)y (9)
T = [ TS (10)
10, T> 7.

This time dependence roughly corresponds to the
temporal variation of the production of gamma rays
by a nuclear explosion. The distribution of forward-
velocity components, G, (u), requires that every elec-
tron egress from the slab with the same forward-
velocity component. The first-order approximation
to the equation of motion is

gu, 7;t) = [Cu"(t—f)—%AG"eM(t_T)z’ T < 7,
CUQ(t—‘T)—%AGoeara(t_T)z, T > To.
(11)

The second-order approximation for all ¢ cannot be
obtained without numerical computations. How-
ever, it can be easily demonstrated that the first-
order approximation is the exact solution for times
t < to, where

to = (1/a) In (2cuee/ AG,) (12)

is the emission time of the electrons that are at-
tracted back to the slab first. The electric field
produced by the scattered electrons for ¢t < ¢, is

E(z, 1) = (e/Gon(cuct — 2){exp ni(z, 1) — 1}, (13)

where 7, is the 7 root of the function £, (u,, r, t) — z.
If there is more than one root, 7, is taken as the root
that is less than {,.

Consider a second special case:

Tg(T) = ToB(T), (14)
2
Go) = {ZGuu/u,,,, 0<u<u, (15)
0, U > U,

C. D. TAYLOR

where Ty, = ¢*™ — 1 and u,, is the maximum oc-
curring forward velocity component. This time de-
pendence of the incident flux is a rough approxima-
tion to the temporal production of gamma rays by
a nuclear explosion, and the distribution of forward
components of the egressing electron velocities is a
crude approximation to the actual case. The first-
order approximation to the solution turns out to be

the exact solution,
Eu, ) = cut — LAT.G,(1 — v’ /ul). (16)

The electric field produced by the scattered electrons
is

E(x, ) = +(e/9ToGoll — W:1/tn) In(m — 1), (17)

where
u(z, t) = {—cul
+ [cub, + AG T2z + AG,To?)1}/AG,T\t.
CONCLUDING REMARKS

It has been possible to treat rigorously the prob-
lem of obtaining the motion of electrons egressing
from an infinite slab. A knowledge of this motion
allows the determination of the resulting electro-
magnetic field. This is of interest particularly in the
study of the effects produced by the high-density
gamma flux from a nuclear explosion.

Both special cases treated have definite merits
in predicting the behavior of the electrons that are
scattered from a slab by the gamma flux from a
nuclear explosion. The first case represents the col-
lective behavior of the electrons and is more im-
portant in determining the coherent rf radiation
that may be produced. This is the case treated by
Karzas and Latter." The second case is more easily
treated analytically. By following the development
presented, it is possible to treat the general case as
accurately as desired.
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A formal method is given for calculating the electrical conductivity tensor in ascending powers of
the interaction for a system of electrons interacting with a random distribution of scattering centers.

N the past few years there has been considerable
interest in the calculation of transport coefficients
for many particle systems. In particular, the elec-
trical conductivity tensor for a system of electrons
interacting with a random distribution of scattering
centers has been studied in detail, and explicit
calculation has been made up to zeroth order in
the interaction.’” In the present note we should
like to show how these results can be obtained in
a systematic way utilizing a method which has
been developed previously in a somewhat different
context.> It may also serve as another example
where this technique can be applied successfully.
Our starting point is the Kubo formula in the
one-electron approximation (we refer for notation
to Ref. 2).

. d . . .
Opr = —hIPo TI‘,, {a—lfi %Uu(p)jv + Jqu(p)]} (1)
with
j“(p) = j(; dt e_"'e"m‘*”"j“e‘“”"*”'“, (2)

In order to compute Eq. (1) in ascending powers
of A we have to make a perturbation expansion of
the operator j,(p). We thereby use the momentum
representation |k) in which the operators H, and j,
are diagonal. The technique described in Ref. 3
can now be applied to calculate the diagonal matrix
elements of the operator j,.(p). As is well known,
the ordinary perturbation expansion for these
elements suffers from the difficulty that each term
in the expansion diverges in the limit of p — 0.
What the method of Ref. 3 essentially does is to
remove these divergences by a certain resummation
procedure. The result is given formally by

~* This work was supported in part by the U. 8. Atomic
Energy Commission.,

, (;rs On leave from the University of Nymegen, The Nether-
anas.

1 G. V. Chester and A. Tellung, Proc. Phys. Soc. (London)
73, 745 (1959); E. Verboven, Physica 26, 1091 (1960); A.
Janner, Helv. Phys. Acta 36, 857 (1963).

2 P. Berger, J. M. J. Van Leeuwen, and E. Verboven,

Physica 29, 1409 (1963).
*J. A. Tjon, Phys. Rev. 143, 259 (1966).

{ju(p)}d = |:p + nz:; VL;”(P)]- ju: (3)

where L{”(p) are linear operators defined in the
Hilbert space £ of the linear operators which are
diagonal in the representation |k). They are given by

LP@a= (=" [ dn [ dn o [T dne
0 0 ]

X [a; V(TI)) Virs), -~ ’ V(Tn—l); Viaia @)

with
V(T) = eiHo‘r Ve-—iﬂgr ,

and where a € £. In Eq. (4) [a; - - - ]...4 designates
the simple diagonal part of the nth commutator
which is defined according to

[a; V, Tty V]n:ad
= [ [a: Vi, Vieay ©-+ Vieay Vg

ie.,, of each commutator we have to retain only
its nondiagonal contribution, except the last one,
of which we should keep the diagonal part. It
should be mentioned that, in general, the simple
diagonal part is not the same as the so-called
irreducible part defined by Van Hove,* but it also
contains reducible contributions. Furthermore, we
note that the series in Eq. (3) starts with n = 2
because we have assumed that (k| V |k) = 0. We
now make use of the well-known expansion for
two noncommuting operators 4 and B,

[A+B]" =47 —A"BA" + ---.
With
A=p+NLP@p) and B= X XIP(@)

n=3

we obtain
@} = Ip + ML Y, — p + ML @1
X [E x"Zs"’@)][p + NLPO1 Y+ . ()

4 L. Van Hove, Physica 23, 441 (1957).
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The reason for using this expansion is that for
p — +0 the quantity [p + ML (p)]'a exists,
and it is of the order A, In particular, for the case
of spherical symmetric scattering centers one has
the simple result

’1,:1’1}'10 &| [p + N¥LP D) e k) = A1 (E)ak).  (6)

In a similar way the nondiagonal part of 7,(p) can
be treated. As a result we find

L@l = ZXIEOBOL @
with
LP@a = (=i f: dr, fo dry -+ fo dr,
7 X L Lo, Vo Vil -+, Ve

Finally, we also need the perturbation expansion
of the operator df/6H which, in fact, has been
given by Chester and Tellung.' It is of the following
form:

Z )\211 (2n) + Z >\2n+1 (2n+l) (8)

n=0

where £ and f&**¥ are diagonal and nondiagonal,
respectively, in the representation |[k). The series
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expansion in \ of the electrical conductivity tensor

E )‘n (n) (9)

n=-2
can be obtained on substituting Egs. (5), (7),
and (8) into Eq. (1) and collecting all the terms with
the same power in A. For the first three terms of
Eq. (9), we find

(T( 2) l[(] f(O) (2)""p)
+ (157G 3‘”"1 2], (10a)
o’,(,, 1) ;_[(] f(o) (2)-1L(a)z(2) t:
+ (%G Z‘”"Zé’”ﬂ‘”"j )],  (10b)

o’ = =36 Ll L 73 + (4 L L& 73]
G D {_Z‘gz)ﬂzsnzsz)-'
+ L@- ‘ﬁ(s)ﬂ(z)-ﬂz‘;a)zéz)-*}jp)

+ Gf2?, L 75)

+ similar terms with x4 =2 »}. (10¢)

We have used here the notation (e, b) = Tr, ab.
Furthermore, the variable p in Eqs. (10a)-(10c)
should be taken to be +0. It can now easily be
shown that Eqs. (10a)-(10c) are equivalent to the
final results of Ref. 2 by writing these expressions
out in the representation |k).
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A Closed Form for Elsasser Integrals*

Seymour J. Worrsont

Wayne State University, Detroit, Michigan
(Received 22 December 1965)

An Elsasser integral is defined as the definite integral of a particular product of three spherical

harmonics, namely,

_ YA

2T x ] m .
mi| 0Y 02 8Y5:
[ Y"‘[ 20 op

dp 40 :| 46 de.

This integral occurs in connection with the “dynamo theory” of the magnetic field of the ea.rth
and thus it is desirable to have a value of the integral involving only the indices of the spherical
harmonics. Such a closed form is developed and some properties of the integral are discussed.

1. INTRODUCTION

HE type of integral herein discussed is one
involving the product of three spherical harmon-
ics and their derivatives in the form

2r L
mimsms mye
Ln;n.n. - f f Ynx
0 0

oYy ay.: aY.raYn:
X { 90  dp dp 40 }do de, (1)
where

Y0, @) = Ph(6) €™ /(2m)} @

and P7(f) are normalized associated Legendre
polynomials.’

It is desired to evaluate (1) in a closed form
depending only on some function of the indices.

Such integrals have thus far occurred in physics
in connection with the dynamo theory of the mag-
netic field of the earth.”™ Since Elsasser’ was the
first to make use of such integrals, the author often
refers to (1) as an‘‘ Elsasser” integral. The evaluation
of these integrals has been considered by several
authors®®® and tables of values are available for

* This work was sponsored by the Air Force Cambridge
Research Laboratories Office of Aero Space Research under
contract No. AF 19(628)-2497 and is part of a dissertation
submitted in partial fulfillment of the requirements for the
Elfgég()a of Doctor of Philosophy at Wayne State University

t Present address: Roland F. Beers, Inc., Alexandria,
Virginia.

UFor their definition see, E. Merzbacher, Quantum Mech-
anics (John Wiley & Sons, Inc., New York, 1961) p. 180.

2 W. M. Elsasser, Phys. Rev. 69, 106 (1946).

(19; E C. Bullard and H. Gellman, Phil. Trans. A247, 213
4+ 8. J. Wolfson, unpublished Ph. D. dissertation, Wayne
State University (1965).

¢ J. R. Bird, unpublished M. Se. thesis, The University of
Toronto (1949).

¢ L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

some n and m,” but no closed form solution has
been given.

Infeld and Hull® outline a method whereby one
can obtain a closed form for (1), but when their
method is followed it appears that it does not give
the correct result. The difficulty seems to lie in the
result obtained by using Eq. (9.3.4) of their article
in connection with (1) above. All of the steps up
to that point are valid for (1), however, the result
(9.3.4) requires that the sum of the upper indices
be equal to n, which is not the case for the Elsasser
integrals at that point of the derivation.

The method described below reduces the Elsasser
integral to a sum of integrals for which a closed
form solution is known.

2. CLOSED FORM OF THE INTEGRAL

Substituting (2) in (1), the ¢ integration is quite
easily done and leads to the result

Lm,m,m.
ninang

’L. N ma
= e [ e
dP7;:
de

ar’.,
W} de (3)

with the restriction that m, = m, + ms; otherwise,
the integral vanishes. Using the recurrence relation

{m cot 8 — d/dO}Py = [(n — m)(n + m + VPP

X {msPZ',‘ - m,P;;

to replace the derivatives in (3) leads to the result

mem,mg ?

manans T (27l’)§

X f P mi{mlns — mg)(ng + my + DPPTIPI

— my[(n, — my)(n, + m, + DPPTPI} dE. (4)
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Since the first term in (4) can be obtained from
the second by interchanging n, with n, and m, with
ms, one need only consider the integral

| Pupmpao. ®
o

Making use of the recurrence relation

(n + mn + m + 1)]*13,,“
@n — 1)2n + 1) "

_I:(n—m—Z)(n—m—l):]‘
@n — DE@n — 3)

sin 6 P, = [

m+1
n-2

we can, by repeated application, show that

— — H
Py = [(271 R ) 3::' sin 0

St m—1—2pti
X 20 [(Zn =) o 2].)!] Pl s
©)

where the summation over the index j continues
up to the largest integer J such that

JL<(m—-m-—1)/2

and we use the convention that 0! = 1.
Thus, using (6) to replace PJ**' in (5), we have

(ne — my — 1) !]*
(ny + my + 1)1

(ny + my — 1 — zm]*
(nz - mg - 1 - 2j)!

[ Prpzpza = [ @ntn
0

X Z [(2n2 -1 — 4

0
x [ PRPTPRL, ., sin 0 db. @
0
The integrals occurring in the summation of (7)
are of the type considered by Gaunt’ (with differently
normalized functions) and others.’

1 (g +n, —n — DNE@n, + D@0, + DE@n,y + D

SEYMOUR J. WOLFSON

If we define
27 x
grmr = [ [ veynynsinodods, ®
0 [}
then the integrals in (7) can be written as

[ PrPmPr, i sin 0d0 = @RIKEN e, ©)
(]
where the K’s [Eq. (8)] are known in closed form.
If we introduce (9) into (7), we obtain a closed
form for (5). We then interchange the indices 7,
with n, and m, with m; to obtain the first term
in (4). Combining these results in (4) leads to the
formula

Lm,m.m:
ninans

_ i
= i ane 4+ 1 2]

J .
- 1 — As (ns+m3_1_2])!:l}
X iZo [:(27&3 1 4) (ng — my — 1 — 2j)!

X My, Ma, Ms
n1,n3,m3—1-25

_ 3
— m ans 4+ 1) S|

J «
2 14 (n2+m2—1—2])!:r
X iz-(:) [(2"2 1 - 4j) (s — my — 1 — 25!

X K,'f',’.’n"."-'n"l'zi,n.}, (10)
where J; is the largest integer such that J; <
(n; — m; — 1)/2 and the summation over j is to
be taken only if consistent with the factorial nota-
tion (i.e., terms containing negative factorials are
to be omitted).

If the result containing only the indices is de-
sired, one can substitute in (10) the following
formula® for the K’s:

Kﬁum:m; —
Ri1NaNiy

T @O 0 — )M + 0y — )My F ne + ne + DI

(_l)ma+§(na—nn+m)

[(n1 + m)ln, — m)(n, — my)n; — my) !]’
X 20s + ma) (s + my)!

s + ms + Hlny + 1y — my — §)!

X g (—l)t tn, — my — Hlng — my — Yy ~ ny + my + B’

(D

where the summation over ¢ is taken from { = Q up to ¢ = n, — m, or until one of the factorials

becomes negative.’

7 J. A. Gaunt, Phil. Trans. Roy. Soc. (London) A228, 151 (1929).

8 The result of Infeld and H
of the Spherical Harmonics.
?* The following convention is followed:

is cited here and has been modified by the factor 1/(2x)} to account for the ¢ dependence

nll=n(n—-2) (n—4)..1(2 if » is even). O!=(~—-1)II=1.



A CLOSED FORM FOR

However, substitution of (11) into (10) only leads
to a rather involved expression which cannot be
simplified.

To compute a large number of the Elsasser in-
tegrals, it would appear that one should first cal-
culate the K’s from (11) and then use these in the
computation in (10). Such calculations were carried
out by the author for n» and m values up to 5 and
are available in decimal form to six figures.

3. SELECTION RULES

Both the K- and L-type integrals will vanish un-
less the indices satisfy certain “selection rules.”
These rules have been worked out by several
authors®®™" and will only be cited here for con-
venience.

For the nonvanishing of the K’s the indices must
satisfy

My = Mo + mas, (12&)
i £

Ine — 1| < 15 + 15 (B cianate moniion ™), (12b)

n, -+ n, + n; = even integer. (12¢)

Similar selection rules for the Klsasser integrals
are

ELSASSER INTEGRALS 1339
m, = My + My, (13&)
g — ng] +1 < ny <y 4+ m3 — 1, (13b)
n, + n, + n; = odd integer. (13¢)

The selection rules must be satisfied in order that
(1) be different from zero. However, even if these
rules are satisfied, it is possible that due to the
oscillations of the integrand of (1) the integral
vanishes. Such cases have been found for the K-type
integrals® (8). For the Elsasser integrals with n, m
values up to 5, the only one found is L2} = 0,
which vanishes upon integration.

4. SYMMETRIES

The calculation which resulted in Eq. (10) holds
only for m, and m,; nonnegative. From (1) it is
easy to establish by partial integration the relations

L = — Lo, (14a)
L™ = (=D™LIET, (14b)
Loy ™™ = (=D™mLERT. (14c)

From (14), together with (10), one can obtain
all the L’s for both positive and negative m values.
From (14a) it is also easily seen that for n, = n,,
m, = ms, the value of L is identically zero.
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Erratum: Notes on the Evaluation of Some Fermi Integrals

M. L. GLASSER

[J. Math. Phys. 5, 1150 (1964)]
(Received 24 January 1966)

The expressions following Eq. (12) should read
(1) k an integer:
T’C! 1 dk+l s (_1)k+l
Fivp = ;;ﬁ {m&wi [z cse (m2)e’ '] + P ®Fk + 1, —e)

exactly.
(2) k not an integer:

T k+1 3 2n—1 __ ‘2nB
Fuyg) o LE+ D {T s 2 55 @ = DB,

T+l -

e-ansr  cOST(k + 1)
T+ 2) "« & (20)! Tk — 2n + 2) of + T

ok + 1, -—e"”)}
for v¢ large.

In Appendix B, the second sentence of paragraph two should be replaced by: If u # 0, B,(\, g) is simply
the residue at the origin; B,(A, 0) is the sum of the residues of the integrand at ¢ = 0, —1, —2, --. .

I am grateful to Dr. Diethard Schiller, University of Timisoara, Rumania, for bringing these points to
my attention.
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Erratum: On Polynomial Systems in a Banach Ring

JouN G. TayLor

[J. Math, Phys. 6, 1148 (1965)]
(Received 25 January 1966)

In Sec. 6 directly after Eq. (15), delete the sentence “This is because . . . associative 3 ring’’ and replace by:
This is so, even though the triple product is nonassociative. This is because the nonassociativity does not
prevent iteration of (15), which is proved to converge by use of the identity 2° — y* = 2’(z — y) +
(x — vy + yl= — yy.

I would like to thank Professor H. Araki for drawing the error to my attention.

NOTICE

After 1 September 1966, all manuscripts submitted to the Journal of Mathematical
Physics should be addressed as follows:

Journal of Mathematical Physics
Dr. Elliott W. Montroll, Editor
Physics Department

University of Rochester
Rochester, New York 14627
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